Physical Oceanography - UNAM, Mexico Lecture 2: the Equations of Ocean Circulation and Ocean Modelling

Physical Oceanography - UNAM, Mexico Lecture 2: the Equations of Ocean Circulation and Ocean Modelling

Physical Oceanography - UNAM, Mexico Lecture 2: The Equations of Ocean Circulation and Ocean Modelling Robin Waldman October 15th 2018 A first taste... ¶uh 1 ¶ ¶uh + (u:r)uh + f k × uh = − rhP + rh:(khurh)uh + (kzu ) ¶t r0 ¶z ¶z Z 0 0 P(z) = r0gh + g rdz z Z z 0 w(z) = − rh:uhdz −H ¶h Z h = −rh: uhdz + P + R − E ¶t −H ¶q ¶ ¶q 1 _ + (u:r)q = rh:(khT rh)q + (kzT ) + Θ ¶t ¶z ¶z rcw ¶S ¶ ¶S + (u:r)S = r :(k r )S + (k ) + S_ ¶t h hS h ¶z zS ¶z r = r(q;S;P0(z)) All the physics of an ocean circulation model is here ! Outline The Equations of Ocean Circulation Ocean modelling Outline The Equations of Ocean Circulation Ocean modelling Conservation of mass : continuity In the following : control volume of zonal, meridional and vertical sizes dx, dy and dz and density r on a fixed Cartesian coordinate system (i;j;k) attached to the ground. d(rdxdydz) = 0 dt dr ddx ddy ddz = dxdydz + r(dydz + dxdz + dxdy ) dt dt dt dt dr = dxdydz + r(dydzdu + dxdzdv + dxdydw) dt Hence dividing by dxdydz : dr ¶u ¶v ¶w + r( + + ) = 0 dt ¶x ¶y ¶z dr () + rr:v = 0 dt ¶ ¶ ¶ with r = ( ¶x ; ¶y ; ¶z ) the space derivative operator. Conservation of mass : continuity Mass conservation : Hence dividing by dxdydz : dr ¶u ¶v ¶w + r( + + ) = 0 dt ¶x ¶y ¶z dr () + rr:v = 0 dt ¶ ¶ ¶ with r = ( ¶x ; ¶y ; ¶z ) the space derivative operator. Conservation of mass : continuity Mass conservation : d(rdxdydz) = 0 dt dr ddx ddy ddz = dxdydz + r(dydz + dxdz + dxdy ) dt dt dt dt dr = dxdydz + r(dydzdu + dxdzdv + dxdydw) dt Conservation of mass : continuity Mass conservation : d(rdxdydz) = 0 dt dr ddx ddy ddz = dxdydz + r(dydz + dxdz + dxdy ) dt dt dt dt dr = dxdydz + r(dydzdu + dxdzdv + dxdydw) dt Hence dividing by dxdydz : dr ¶u ¶v ¶w + r( + + ) = 0 dt ¶x ¶y ¶z dr () + rr:v = 0 dt ¶ ¶ ¶ with r = ( ¶x ; ¶y ; ¶z ) the space derivative operator. dr0 0 dt + (r0 + r )r:v ' r0r:v = 0 () r:v = 0 I To a very good approximation, oceanic currents are non-divergent. Conservation of mass : continuity In the ocean, Boussinesq approximation : relative density variations are small : 0 0 r(x;y;z;t) = r0 + r (x;y;z;t) and r << r0 The continuity equation becomes : Conservation of mass : continuity In the ocean, Boussinesq approximation : relative density variations are small : 0 0 r(x;y;z;t) = r0 + r (x;y;z;t) and r << r0 The continuity equation becomes : dr0 0 dt + (r0 + r )r:v ' r0r:v = 0 () r:v = 0 I To a very good approximation, oceanic currents are non-divergent. Conservation of momentum Newton’s 2nd law : the Lagrangian (material) evolution of momentum is determined by the sum of external (gravity) and body (pressure and friction) forces. ¶u ¶u ¶u ¶u du = dt + dx + dy + dz ¶t ¶x ¶y ¶z du ¶u dt ¶u dx ¶u dy ¶u dz () = + + + dt ¶t dt ¶x dt ¶y dt ¶z dt ¶u ¶u ¶u ¶u = + u + v + w ¶t ¶x ¶y ¶z ¶u = + (u:r)u ¶t (u:r)u is the (nonlinear) advection term. Conservation of momentum ¶u The acceleration in the Eulerian (fixed) framework ¶t is far easier to du observe and model than the Lagrangian one dt . Relation between both : Conservation of momentum ¶u The acceleration in the Eulerian (fixed) framework ¶t is far easier to du observe and model than the Lagrangian one dt . Relation between both : ¶u ¶u ¶u ¶u du = dt + dx + dy + dz ¶t ¶x ¶y ¶z du ¶u dt ¶u dx ¶u dy ¶u dz () = + + + dt ¶t dt ¶x dt ¶y dt ¶z dt ¶u ¶u ¶u ¶u = + u + v + w ¶t ¶x ¶y ¶z ¶u = + (u:r)u ¶t (u:r)u is the (nonlinear) advection term. Conservation of zonal momentum over a control volume ∂u ν (z)δ x δ y - w(z) δxδy u(z) ∂ z ∂ u ν ( y)δ x δ z - v(y) δxδz u(y) ∂ y P(x-δx)/ρ δyδz P(x)/ρ δyδz 0 0 u(x-δx) δyδz u(x-δx) -f v δxδyδz ∂u ∂u - u(x) δyδz u(x) −ν (x−δ x)δ y δ z −ν ( y−δ y)δ x δ z ∂ u ∂ x ∂ y ν (x)δ y δ z δz ∂ x v(y-δy) δxδz u(y-δy) δy w(z-δz) δxδy u(z-δz) ∂ u −ν (z−δ z)δ x δ y k j ∂ z i Figure 1 – Conservation of zonal momentum over a control volume : advection (black), viscous forces (red), pressure forces (blue) and Coriolis acceleration (purple). Conservation of momentum Advection of zonal momentum in all faces of the control volume : Conservation of zonal momentum over a control volume ∂u ν (z)δ x δ y - w(z) δxδy u(z) ∂ z ∂ u ν ( y)δ x δ z - v(y) δxδz u(y) ∂ y P(x-δx)/ρ δyδz P(x)/ρ δyδz 0 0 u(x-δx) δyδz u(x-δx) -f v δxδyδz ∂u ∂u - u(x) δyδz u(x) −ν (x−δ x)δ y δ z −ν ( y−δ y)δ x δ z ∂ u ∂ x ∂ y ν (x)δ y δ z δz ∂ x v(y-δy) δxδz u(y-δy) δy w(z-δz) δxδy u(z-δz) ∂ u −ν (z−δ z)δ x δ y k j ∂ z i Conservation of momentum Advection of zonal momentum in all faces of the control volume : Figure 1 – Conservation of zonal momentum over a control volume : advection (black), viscous forces (red), pressure forces (blue) and Coriolis acceleration (purple). Conservation of zonal momentum over a control volume ∂u ν (z)δ x δ y - w(z) δxδy u(z) ∂ z ∂ u ν ( y)δ x δ z - v(y) δxδz u(y) ∂ y P(x-δx)/ρ δyδz P(x)/ρ δyδz 0 0 u(x-δx) δyδz u(x-δx) -f v δxδyδz ∂u ∂u - u(x) δyδz u(x) −ν (x−δ x)δ y δ z −ν ( y−δ y)δ x δ z ∂ u ∂ x ∂ y ν (x)δ y δ z δz ∂ x v(y-δy) δxδz u(y-δy) δy w(z-δz) δxδy u(z-δz) ∂ u −ν (z−δ z)δ x δ y k j ∂ z i Figure 2 – Conservation of zonal momentum over a control volume : advection (black), viscous forces (red), pressure forces (blue) and Coriolis acceleration (purple). Conservation of momentum Zonal pressure force on the western and eastern faces of the control volume : Conservation of zonal momentum over a control volume ∂u ν (z)δ x δ y - w(z) δxδy u(z) ∂ z ∂ u ν ( y)δ x δ z - v(y) δxδz u(y) ∂ y P(x-δx)/ρ δyδz P(x)/ρ δyδz 0 0 u(x-δx) δyδz u(x-δx) -f v δxδyδz ∂u ∂u - u(x) δyδz u(x) −ν (x−δ x)δ y δ z −ν ( y−δ y)δ x δ z ∂ u ∂ x ∂ y ν (x)δ y δ z δz ∂ x v(y-δy) δxδz u(y-δy) δy w(z-δz) δxδy u(z-δz) ∂ u −ν (z−δ z)δ x δ y k j ∂ z i Conservation of momentum Zonal pressure force on the western and eastern faces of the control volume : Figure 2 – Conservation of zonal momentum over a control volume : advection (black), viscous forces (red), pressure forces (blue) and Coriolis acceleration (purple). Conservation of momentum Zonal pressure force on the western and eastern faces of the control volume : FPx = (P(x − dx) − P(x))dydz hence volumic zonal pressure force : F ¶P Px = − dxdydz ¶x Generalizing to other spatial dimensions : F P = −rP dxdydz Conservation of momentum Friction Ft : I Newton’s law of viscosity for a Boussinesq Newtonian fluid : ¶uj ¶ui tij = +nr( + ) ¶xi ¶xj with tij the viscous stress exerted over the coordinate i on velocity component j, xi ;xj = (x;y;z), ui ;uj = (u;v;w) and n = 8:9 × 10−7m2=s the water kinematic viscosity. I The second term vanishes in a Boussinesq fluid : hence friction behaves just like molecular or heat diffusion ! Conservation of zonal momentum over a control volume ∂u ν (z)δ x δ y - w(z) δxδy u(z) ∂ z ∂ u ν ( y)δ x δ z - v(y) δxδz u(y) ∂ y P(x-δx)/ρ δyδz P(x)/ρ δyδz 0 0 u(x-δx) δyδz u(x-δx) -f v δxδyδz ∂u ∂u - u(x) δyδz u(x) −ν (x−δ x)δ y δ z −ν ( y−δ y)δ x δ z ∂ u ∂ x ∂ y ν (x)δ y δ z δz ∂ x v(y-δy) δxδz u(y-δy) δy w(z-δz) δxδy u(z-δz) ∂ u −ν (z−δ z)δ x δ y k j ∂ z i Figure 3 – Conservation of zonal momentum over a control volume : advection (black), viscous forces (red), pressure forces (blue) and Coriolis acceleration (purple). Conservation of momentum Zonal friction force on all faces of the control volume : Conservation of zonal momentum over a control volume ∂u ν (z)δ x δ y - w(z) δxδy u(z) ∂ z ∂ u ν ( y)δ x δ z - v(y) δxδz u(y) ∂ y P(x-δx)/ρ δyδz P(x)/ρ δyδz 0 0 u(x-δx) δyδz u(x-δx) -f v δxδyδz ∂u ∂u - u(x) δyδz u(x) −ν (x−δ x)δ y δ z −ν ( y−δ y)δ x δ z ∂ u ∂ x ∂ y ν (x)δ y δ z δz ∂ x v(y-δy) δxδz u(y-δy) δy w(z-δz) δxδy u(z-δz) ∂ u −ν (z−δ z)δ x δ y k j ∂ z i Conservation of momentum Zonal friction force on all faces of the control volume : Figure 3 – Conservation of zonal momentum over a control volume : advection (black), viscous forces (red), pressure forces (blue) and Coriolis acceleration (purple).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    125 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us