ELEG 5173L Digital Signal Processing Ch. 2 the Z-Transform

ELEG 5173L Digital Signal Processing Ch. 2 the Z-Transform

Department of Electrical Engineering University of Arkansas ELEG 5173L Digital Signal Processing Ch. 2 The Z-Transform Dr. Jingxian Wu [email protected] 2 OUTLINE • The Z-Transform • Properties • Inverse Z-Transform • Z-Transform of LTI system 3 Z-TRANSFORM • Bilateral Z-transform X (z) x(n)z n n • Unilateral Z-transform X (z) x(n)z n n0 • Z-transform: – Can simplify the analysis of discrete-time LTI systems – Analyze the system in z-domain instead of time domain – Doesn’t have any physical meaning (the frequency domain representation of discrete-time signal can be obtained through discrete-time Fourier transform) – Counterpart for continuous-time systems: Laplace transform. 4 Z-TRANSFORM • Example: find Z-transforms – 1. x(n) (n) n 1 – 2. x(n) u(n) 2 5 Z-TRANSFORM • Example n 1 – 3. x(n) u(n 1) 2 • Region of convergence (ROC) 6 Z-TRANSFORM: CONVERGENCE • ROC of causal signal x(n) nu(n) • ROC of anti-causal signal x(n) nu(n 1) 7 Z-TRANSFORM • Example: find the Z-transforms for the following signals n n 1 1 x(n) u(n) u(n) 2 3 8 Z-TRANSFORM • Example: find the Z-transforms for the following signals 3n , n 2 n x(n) 1 , n 2 3 9 Z-TRANSFORM: TRANSFORM TABLE 10 Z-TRANSFORM: TRANSFORM TABLE 11 OUTLINE • The Z-Transform • Properties • Inverse Z-Transform • Z-Transform of LTI system 12 PROPERTIES • Linearity – If Zx1(n) X1(z) Zx2 (n) X 2 (z) – Then Za1x1(n) a2x2(n) a1X1(z) a2 X2 (z) 13 PROPERTIES • Time Shifting – Let x ( n ) be a causal sequence with the Z-transform X (z) – Then n0 1 n0 n0 m Zx(n n0 ) z X (z) z x(m)z m0 1 n0 n0 m Zx(n n0 ) z X (z) z x(m)z mn0 14 PROPERTIES • Example – Solve the difference equation with initial condition y(1) 3 1 y(n) y(n 1) (n) 2 15 PROPERTIES • Example – Solve the difference equation with initial condition y(1) 1 y(0) 1 2 y(n 2) y(n 1) y(n) u(n) 9 16 PROPERTIES • Frequency scaling – If Zx(n) X (z) – Then Zan x(n) X (a1z) 17 PROPERTIES • Example – Find the Z-transform of x(n) an cosnu(n) 18 PROPERTIES • Differentiation with respect to z – If Zx(n) X (z) – Then d Znx(n) z X (z) dz 19 PROPERTIES • Example – Find the Z-transform of y(n) n(n 1)u(n) 20 PROPERTIES • Initial value lim X (z) x(0) z • Final value lim(1 z1)X (z) x() z1 21 PROPERTIES • Example – Find the initial value and final value of the following signal. z2 2z 3 X (z) (z 1)(z 0.5)(z2 z 1) 22 PROPERTIES • Convolution – If Zh(n) H(z) Zx(n) X (z) – Then Zx(n) h(n) X (z)H(z) • Example – Find the convolution of the following two sequences x(n) 1,2,0,1 y(n) 1,3,1 23 PROPERTIES 24 OUTLINE • The Z-Transform • Properties • Inverse Z-Transform • Z-Transform of LTI system 25 INVERSE Z-TRANSFORM • Review z az anu(n) nanu(n) z a (z a)2 • Inverse Z-Transform by partial fraction expansion – Expand X(z) in the form of z , az , etc. z a (z a)2 1 1 1 A A A X (z) X (z) 0 1 2 (z a )(z a ) 1 2 z z(z a1)(z a2 ) z z a1 z a2 X (z) X (z) X (z) A z A (z a ) A (z a ) 0 z 1 1 z 2 2 z z0 za1 za2 1 z z X (z) A0 A1 A2 z(z a1)(z a2 ) z a1 z a2 26 INVERSE Z-TRANSFORM • Example – Find the inverse Z-Transform of 1 X (z) 1 1 1 z z z 2 2 4 27 INVERSE Z-TRANSFORM • Solve the difference equation 3 1 y(n) y(n 1) y(n 2) (n) 4 8 28 INVERSE Z-TRANSFORM • Example – Find the convolution anu(n) bnu(n) 29 INVERSE Z-TRANSFORM • Example – Find the following convolutions anu(n) (n 1) anu(n) (n 1) 30 OUTLINE • The Z-Transform • Properties • Inverse Z-Transform • Z-Transform of LTI system 31 LTI SYSTEM • Transfer function of discrete-time LTI system – ad y(n) x(n) h(n) Y(z) X (z)H(z) Y (z) H(z) X (z) • Transfer function of discrete-time LTI system N M ak y(n k) bk x(n k) k0 k0 – Z-transform on both sides: N M k k ak z Y (z) bk z X (z) k0 k0 M k bk z k0 H (z) N k ak z k0 32 LTI SYSTEM • Example – Let the step response of a LTI system be as follows. Find the transfer function n n 6 1 1 2 1 y(n) u(n) u(n) u(n) 5 2 2 15 4 33 LTI SYSTEM • Zeros and poles (z z )(z z )(z z ) H(z) M M 1 1 (z pN )(z pN 1)(z p1) – Zeros: z1, z2 ,, zM – Poles: p1, p2 ,, pN • Stability – A discrete-time LTI system is stable if all the poles are inside the unit circle. – A discrete-time LTI system is unstable if at least one pole is on or outside the unit circle. – Review: a continuous-time LTI system is stable if all the poles are on the left half plane. 34 LTI SYSTEM • Example – Consider a LTI system described by the difference equation. Find the transfer function and the zeros and poles. Is the system stable? 1 y(n) 2y(n 1) 2y(n 2) x(n) x(n 1) 2 35 LTI SYSTEM • Example – Find the transfer function of the system shown in the following diagram. If k = 1, is the system stable? 0.8z H (z) (z 0.5)(z 0.8) 36 LTI SYSTEM • Matlab 2 z2 – Example H(z) 1 3z1 2z2 % numerator coefficients b = [2, 0, 1]; % denominator coefficients a = [1, 3, 2]; [r, p, k] = residuez(b, a) r = [4.5, -3], p =[-2, -1], k = 0.5 r1 r2 4.5 3 H(z) 1 1 k 1 1 0.5 1 p1z 1 p2z 1 (2)z 1 (1)z 37 LTI SYSTEM • Matlab 2 z2 – Example (Cont’d) H(z) 1 3z1 2z2 % numerator coeffcients b = [2, 0, 1]; % denominator coefficients a = [1, 3, 2]; % partial fraction expansion [r, p, k] = residuez(b, a) % find the zeros z = roots(b); % plot the poles and zeros zplane(b, a); % find the output to the system with an input x x = [2, 1, -2, 3]; y = filter(b, a, x); 38 LTI SYSTEM • Matlab 2 z2 – Example (multiple poles) H(z) 1 2 n 1 4z az 4z na u(n) 2 % numerator coeffcients (z a) b = [2, 0, 1]; % denominator coefficients a = [1, 4, 4]; % partial fraction expansion [r, p, k] = residuez(b, a) r = [-0.5, 2.25], p =[-2, -2], k = 0 r1 r2 0.5 2.25 H(z) 1 1 2 1 1 2 1 p1z (1 p2z ) 1 (2)z [1 (2)z ] h(n) 0.5(2)n u(n) 2.25(n 1)(2)n1u(n 1).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    38 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us