Overview of Dark Matter Searches with Liquid Nobles

Overview of Dark Matter Searches with Liquid Nobles

<p>Overview of Dark Matter searches with liquid nobles </p><p>Marcin Kuźniak </p><p><a href="mailto:[email protected]" target="_blank">[email protected] </a></p><p><strong>1</strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Outline </p><p>●●●</p><p>Dark matter detection Noble liquid technology Physics landscape </p><p>–</p><p>High mass WIMPs </p><p>●</p><p>Spin-independent </p><p>●</p><p>Spin-dependent </p><p>–</p><p>Low mass WIMPs </p><p>●●●●●</p><p>Status of experimental Ar and Xe programs Target complementarity Main challenges moving forward (Biased) selection of new ideas Summary </p><p><strong>2</strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>DM direct detection signature </p><p><strong>Direct detection </strong></p><p>●●</p><p>Only through rare interactions with ordinary matter </p><p>After the interaction, recoiling nucleus deposits energy (<strong>heat, </strong></p><p><strong>light, electric charge, ...</strong>) in the </p><p>detector </p><p>100 GeV WIMP </p><p><strong>Nuclear recoil spectrum </strong></p><p>featureless, ~exponential lower threshold =&gt;more sensitivity natural radioactivity is a background </p><p>●●●</p><p><strong>astrophysics </strong></p><p><strong>detector response </strong></p><p><strong>particle/nuclear physics </strong></p><p><strong>3</strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Backgrounds </p><p><strong>4</strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Liquid noble detectors </p><p>Excitation </p><p>Heat </p><p>Nuclear recoils (NR) </p><p><strong>Ar and Xe are used for WIMP detection. </strong></p><p>●</p><p>Ar inexpensive and advantageous for purification and background rejection </p><p><strong>Why noble elements? </strong></p><p>●</p><p>High light yield, transparent to their own scintillation Easy to purify and scalable to very high masses (At least) two available detection channels: scintillation and ionization </p><p>●●</p><p><strong>5</strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Single or dual phase </p><p>gas </p><p><strong>DarkSide </strong></p><p>approach </p><p><strong>DEAP </strong></p><p>approach </p><p>Detect primary scintillation light (<strong>S1</strong>) from the original event. Ionization charge drifted to high field gas phase region and converted to secondary </p><p>scintillation (<strong>S2</strong>). </p><p>●</p><p>Time projection chamber (TPC): time diff. S2-S1 and top PMTs used to localize event </p><p>●</p><p>Electronic recoil discrimination: </p><p>●</p><p>S2/S1 in Xe </p><p>●</p><p>In Ar PSD on S1 only is superior (S2 still used for position reconstruction) </p><p>●</p><p><strong>Dual phase: better position resolution </strong>(up to a few meters detector size) <strong>Single phase: higher coverage with photosensors, more scalable, operation </strong></p><p>●</p><p><strong>simplicity, easier to make radiopure </strong></p><p><strong>6</strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Pulse shape discrimination (PSD) </p><p>Ar singlet and triplet excited states have well separated lifetimes (6ns vs. ~1.5us) </p><p><strong>Single phase LAr: </strong></p><p>scintillation channel is sufficient for b/g rejection no need for the ionization channel </p><p>PMT signal: </p><p>Prompt : 0-150ns Late: 150ns-10μs <br>Neutron (AmBe) </p><p>γ(<sup style="top: -0.4512em;">22</sup>Na) </p><p><strong>7</strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Liquid noble gas experiments </p><p><strong>single phase </strong></p><p>XMASS <br>DEAP-3600 </p><p><strong>Xe </strong><br><strong>Ar </strong></p><p>LUX Xenon1T <br>ArDM DarkSide-50 </p><p>LZ </p><p><strong>dual phase </strong></p><p><strong>8</strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Status and prospects </p><p>Allowed 95% CL region for CMSSM, approx. * </p><p>* sketched by hand, </p><p>●●●</p><p>for illustration </p><p>No new WIMP detection claims LAr and LXe dominate searches in the spin-independent sector &gt;~2 GeV/c2 Continued search towards the neutrino floor still very well motivated </p><p>●</p><p>see e.g. Roszkowski et al., Rept.Prog.Phys. 81 (2018), 066201 </p><p><strong>9</strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Status and prospects: high mass </p><p><strong>Large exposure </strong></p><p>●●●<br>●</p><p>New limits published ~twice a year Beautiful results from LUX, XENON and PandaX <br>Roadmap in place for reaching the neutrino floor </p><p>●</p><p>Multiple new results from LAr detectors, reducing&nbsp;<strong>Scale-up requires global consolidation </strong></p><p>the sensitivity gap </p><p><strong>of efforts and R&amp;D </strong></p><p><strong>10 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Status and prospects: low mass </p><p><strong>Low threshold </strong></p><p>●●</p><p>Leading exclusions from DarkSide-50 and XENON1T (both S2-only) Multiple noble liquid-based and other technologies still in play in different parts of the mass spectrum (SuperCDMS, CRESST, NEWS-G, DAMIC) </p><p>●●</p><p>The neutrino floor soon within reach Still much work on low-energy calibration and backgrounds </p><p>●</p><p><strong>Room for exciting R&amp;D and new ideas! </strong></p><p><strong>11 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Spin-dependent limits </p><p>PICO-60, Phys. Rev. D 100, 022001 (2019) <br>XENON1T, Phys. Rev. Lett. 122, 141301 (2019) </p><p>●●</p><p>Fluorine based target (PICO-60) remain on the lead for WIMP-proton crosssection </p><p>LXe detectors dominate the WIMP-neutron sector </p><p><strong>12 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>New low-mass and SD results from LXe </p><p><strong>LUX </strong></p><p>●</p><p>Uses prompt scintillation signal consisting of single detected photons exploits the double photoelectron </p><p>●</p><p>emission effect at VUV wavelengths </p><p><strong>arXiv:1907.06272v1 arXiv:1907.11485v1 </strong></p><p><strong>XENON1T </strong></p><p>●</p><p>S2-only analysis 258 days livetime <br>30% used to inform cuts Limit extracted from the rest <br>In absence of S1, Z-cut is based on S2 width </p><p>●<br>●●<br>●</p><p><strong>13 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>New industry standard: effective field theory </p><p>●●●</p><p>Allows to more fully explore complementarity between different targets in multiple possible WIMP interaction channels </p><p>Multiple papers and formulations available (NREFT, ChiralEFT, ...) </p><p>Formalism initially developed for SD searches, and first </p><p>employed by LUX in <strong>2016 </strong></p><p>–</p><p>P. Klos et al., PRD 88, 083516 (2013) </p><p>–</p><p>LUX, PRL 116, 161302 (2016) </p><p>●</p><p>Then generalized to the SI case and employed by XENON1T for WIMP-pion exclusion in <strong>2019 </strong></p><p>–</p><p>M. Hoferichter et al., PRD 94, 063505 (2016) </p><p>–</p><p>XENON1T, PRL 122, 071301&nbsp;(2019) </p><p>●●</p><p>Nuclear form factors available for many targets including LXe, and since recently also for LAr, PRD 99, 055031 (2019) </p><p>Codes available online for analysts: WIMPy, ChiralEFT </p><p><strong>14 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>XENON1T: WIMP-pion exclusion </p><p>Phys. Rev. Lett. 122, 071301 (2019) </p><p>●●●</p><p>ChiralEFT driven interpretation Generally, many operators and coupling types and dark matter scenarios can be addressed on similar grounds Complementary work to follow soon for LAr experiments </p><p><strong>15 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Other channels </p><p>●</p><p>DM-electron </p><p>●</p><p>Axion-like particles, dark photons: XENON1T </p><p><strong>arXiv:1907.11485v1 </strong></p><p>DarkSide-50 Phys. Rev. Lett. 121, 111303 (2018) </p><p>●</p><p>Boosted DM </p><p><a href="/goto?url=https://arxiv.org/abs/1712.07126" target="_blank">arXiv:1712.07126 </a></p><p>So far projections, no published limits </p><p><strong>16 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>LAr detectors </p><p>●●</p><p>More than 300 scientists from 15 countries and 60 institutions Officially supported by underground labs: LNGS, LSC, and SNOLAB </p><p><strong>DarkSide-50 </strong></p><p>(50 kg, LNGS) <br>10 kg <br>100 kg </p><p><strong>ArDM </strong>(1t, LSC) </p><p>1000 kg </p><p><strong>DEAP-3600 </strong>(3.3t, </p><p>SNOLAB) </p><p><strong>Global Argon Dark Matter Collaboration formed </strong></p><p><strong>DarkSide-20k </strong></p><p>(50t, LNGS) <br>100000 kg </p><p><strong>Argo</strong>: 400 t </p><p>Slide courtesy J. Monroe </p><p><strong>17 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>On Sept. 8, 2017 an information session was held at the Canadian Embassy in Rome to announce </p><p>the formation of the <strong>Global Argon Dark Matter Collaboration</strong>, including members from the </p><p>Darkside-50, DEAP-3600, ARDM and MiniClean collaborations. The membership totals 350 scientists from 68 institutions in 12 countries and has an immediate objective of a 20,000 kilogram detector called DarkSide-20k to be sited at the Gran Sasso Laboratory in Italy, using argon from an underground source in Colorado, USA, with further removal of the isotope 39Ar at a cryogenic distillation column in Sardinia. The overall objective is a reduction of 39Ar content by a factor of more than 15,000 with a high throughput, which will enable a low-background search for the mysterious dark matter, known to account for most of the matter in the universe, but not yet directly observed. A&nbsp;longer term objective of the collaboration is the creation of a detector with 300,000 kg or more low-radioactivity argon at a future site and technology to be determined. This detector will have the capability of reaching to the so-called "Neutrino floor" created by coherent atmospheric neutrino scattering and will have excellent ability to reject low-energy pp solar neutrino events, through the strong electron discrimination capability of liquid argon, providing unambiguous selection of nuclear recoils from weakly interacting massive dark matter candidates. At the same time, it will also have the ability to perform very precise measurements of higherenergy solar neutrinos such as 7Be, pep, and CNO neutrinos. </p><p><strong>18 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>DarkSide-50 low-mass limit </p><p><strong>PRL121, 081307 (2018) </strong></p><p>S2-only analysis. Ionization-only signal allows sensitive searches for low mass WIMPs: • Two cases: no quenching fluctuations and binomially distributed fluctuations • Background measured at higher energy is extrapolated to low energy </p><p>Future improvements require reduction of quenching fluctuation systematic and further background reduction </p><p><strong>19 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>DEAP-3600 status </p><p><a href="/goto?url=https://arxiv.org/abs/1905.05811" target="_blank">arXiv:1905.05811 </a></p><p>●</p><p>Detailed backgrounds model based on the first calendar year of data (~2017, open analysis) </p><p>●●</p><p>Unprecedentedly low Rn level The best pulse-shape discrimination achieved in LAr </p><p>●</p><p>Collecting blinded data since Jan 2018 </p><p>●</p><p>20% left non-blind </p><p>●</p><p>Plan to keep collecting data at least until end of 2020 </p><p>PRD 100, 022004 (2019) </p><p><strong>20 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>DEAP-3600 result and plans </p><p>PRD 100, 022004 (2019) </p><p>●●</p><p>Leading WIMP exclusion in Ar Acceptance reduced due to cuts against events induced by alpha activity in the neck </p><p>–</p><p>Ongoing development of multivariate analysis expected to recover much of acceptance lost due to neck event cuts </p><p>–</p><p>In parallel, planning for a hardware upgrade </p><p>●</p><p>Other physics papers in preparation </p><p><strong>21 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>DarkSide-20k and beyond </p><p>●●●</p><p>Urania plant for underground argon extraction ARIA facility for chemical purification and isotopic separation </p><p>Seruci-0 </p><p>Key projects also for Argo </p><p><strong>22 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>DarkSide-20k LAr veto concept </p><p>CERN Neutrino Platform: </p><p>●●●</p><p>2 almost identical cryostats built for ProtoDUNE 8x8x8 m<sup style="top: -0.6992em;">3 </sup>inner volume, 750 t of LAr each Technology and expertise taken from LNG industry Construction time: 37-55 weeks Designed as installable underground </p><p>●●</p><p>New approach: atmospheric Ar in ProtoDUNE style large cryostat to provide shielding and active VETO: </p><p><strong>ProtoDUNE </strong></p><p>●</p><p>Allows to eliminate Liquid Scintillator Veto New veto is a giant single phase LAr </p><p>●</p><p>detector </p><p>●</p><p>Simplify the overall system complexity and operation Design fully scalable to a 400 tonne </p><p>●</p><p>detector </p><p><strong>23 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>LXe detectors </p><p><strong>XENON10 </strong>(LNGS) <br><strong>ZEPLIN II </strong>(Boulby) <br><strong>ZEPLIN III </strong>(Boulby) </p><p>10 kg <br>100 kg </p><p><strong>XENON100 </strong>(LNGS) <br><strong>LUX </strong>(250 kg, SURF) <br><strong>PandaX </strong></p><p>(500 kg, CJPL) </p><p><strong>XMASS </strong></p><p>(0.8t, Kamioka) </p><p>1000 kg </p><p><strong>XENON1T </strong></p><p>(1t, LNGS) </p><p><strong>PandaX-4 </strong>(4t, CJPL) <br><strong>XENONnT</strong>: (6t, LNGS) <br><strong>LZ</strong>: (7t, SURF) </p><p>10000 kg </p><p><strong>DARWIN: </strong>50 t </p><p>Slide courtesy J. Monroe </p><p><strong>24 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p><strong>Start in 2020 </strong></p><p>Sanford lab (SURF), South Dakota </p><p>LZ (LUX + ZEPLIN) </p><p>10 tons total, 7 tons active, ~5.6 ton fiducial mass </p><p><strong>25 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Limited by elastic scattering of solar <em>pp </em>neutrinos on electrons! </p><p>Electronic/nuclear recoil discrimination will be critical to achieve this goal. </p><p>Assuming the best factor already achieved by large scale detectors. </p><p><strong>26 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>XENONnT </p><p>E. Aprile, APS 2019 </p><p><strong>27 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>E. Aprile, APS 2019 </p><p><strong>28 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>F. Krueger </p><p><strong>29 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p><p>Ar-Xe complementarity </p><p>Newstead et al., PRD D 88, 076011 (2013) DARWIN, JCAP 10 (2015) 016 </p><p>D. Cerdeno, IPPP April 2018 </p><p><strong>30 </strong></p><p><strong>29-08-2019 </strong><br><strong>Marcin Kuźniak – LIDINE2019, Manchester </strong></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    40 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us