Clues to the Formation and Evolution of Magnetars from X-Ray Observations of the Associated Supernova Remnants

Clues to the Formation and Evolution of Magnetars from X-Ray Observations of the Associated Supernova Remnants

Clues to the Formation and Evolution of Magnetars from X-ray observations of the associated Supernova Remnants! Toshio Nakano1, Kazuo Makishima1,2,3, Hideki Uchiyama4 and Teruaki Enoto2,5! 1The University of Tokyo, 2RIKEN, 3RESCEU,! 4Shizuoka University, 5NASA/GSFC! 0. Magnetars ! • Magnetic fields (B-field) of Neutron Stars (NSs) ! . 1016 – Widely distributed (108-15 G)! 1015 B = P P˙ – Characterize Types of NSs! 1014 13 p • Magnetar, Radio Pulsar, CCO…! 10 P 15 1012 ˙ • Magnetars, NSs with ~ 10 G ! = 2P 1011 ⌧ c th Magnetic Field (G) – Suzaku ~ Japanese 5 X-ray satellite ! 10 10 Radio Pulsar Magnetar ! !!(11 magnetars were observed)! 109 Bynary CCO High-B – Two-Component X-ray Spectra! 108 10-3 10-2 10-1 100 101 102 – Broadband Spectra evolution! Period (s) • Formation is not understood! – Supernova Remnants (SNR) = Clue ! • Temperature, Abundance, Energy, age …! Is there any clue in Mgnertar-hosting ! SNRs ?! ! 0. Magnetars ! • Magnetic fields (B-field) of Neutron Stars (NSs) ! . 1016 – Widely distributed (108-15 G)! 1015 B = P P˙ – Characterize Types of NSs! 1014 13 pXIS HXD • Magnetar, Radio Pulsar, CCO…! 10 P 15 1012 ˙ • Magnetars, NSs with ~ 10 G ! = 2P 1011 ⌧ c th Magnetic Field (G) – Suzaku ~ Japanese 5 X-ray satellite ! 10 10 Radio Pulsar Magnetar ! !!(11 magnetars were observed)! 109 Bynary Done by e.g., Enoto+2010 CCO High-B – Two-Component X-ray Spectra! 108 10-3 10-2 10-1 100 101 102 – Broadband Spectra evolution! Period (s) • Formation is not understood! – Supernova Remnants (SNR) = Clue ! • Temperature, Abundance, Energy, age …! Is there any clue in Mgnertar-hosting ! SNRs ?! ! 1. Supernova Remnants Associated with Magnetars! 1E2259+586/CTB109� 1E 1841-045/Kes73 SGR 0526-41/N49 AX J1845/G29.6+0.1 The Number of Associations Asso / NS TypiCal age (kyr) Pulsar 30/~2300 10-10,000 Magnetar Several /26 (21) < 10 SNR ~300 10 CTB109 has a large diameter => suitable 2. X-ray Observations of CTB109 with Suzaku! • Prototypical Magnetar/SNR association (Gregory & Fahlman 1980) ! – Distance: 3.2 ± 0.2 kpc (kothes+2012)! Previous works 30 ksec 40 ksec • CTB109! ) – Interaction with Giant Molecular Cloud! kpc – Middle age "SNR~ 13 kyr (Sasaki+2013)! • 1E 2259+586 ! . – P = 6.98 s, P = 4.8"10-13 ss-1 (Gavriil+2002)! 13 – B = 5.9"10 G, "c = 230 kyr! Huge age discrepancy between ~ 32’ (26 pc@ 3.2 ~ 32’ 30 ksec 40 ksec ⌧ ⌧ c(230 kyr) SNR(1.3kyr) • False color X-ray Image taken by Suzaku.! Suzaku Observations! 0.4-0.9 keV (red), 0.9-1.7 keV (green), – 1E 2259+596: 120 ksec (Enoto+2009)! 1.7-5.0 keV (blur) – CTB109 : 4 pointings (Nakano+ submitted )! 3. Spectral Analysis of CTB109 ! Mg(He-like) Characteristic emission lines Si(He-like) S(He-like) Ne(H-like) Ne(He-like) Fe(Ne-like) O(H-like) 3. Spectral Analysis of CTB109 ! Mg(He-like) 22 -2 Si(He-like) S(He-like) NH=0.88×10 cm Absorption kT = 0.61 keV Column density 2 12 -3 net = 1.0×10 s cm (fixed) Ne(H-like) Ne(He-like)kT1 = 0.27 keV n t= 0.5×1012 s cm-3 Fe(Ne-like) e -3 nshell = 1 – 3 cm O(H-like) Abundance : Solar #2/d.o.f = 983/961 Using Non Equilibrium Ionization model(NEI) ! Spectra require two plasma components (low and high kT) 3. Spectral Analysis of CTB109 ! Mg(He-like) 22 -2 Si(He-like) S(He-like) NH=0.88×10 cm Absorption kT = 0.61 keV Column density 2 12 -3 net = 1.0×10 s cm (fixed) Ne(H-like) Ne(He-like)kT1 = 0.27 keV n t= 0.5×1012 s cm-3 Fe(Ne-like) e -3 nshell = 1 – 3 cm O(H-like) Abundance : Solar #2/d.o.f = 983/961 Using Non Equilibrium Ionization model(NEI) ! Spectra require two plasma components (low and high kT) 4. Properties of the SN explosion CTB109! Ejecta (kT2 = 0.61 keV) 10 • Abundance pattern of the ejecta component is slightly over 1 solar. ! 1 Solar • Similar to theoretical O Ne Mg Si Fe model of M ~! 0.1 10 12 14 16 18 20 22 24 26 ! ! ! 15~25 M◉ (?)! Compared with Nomoto+1997 Atomic Number Heated ISM(Inter Stellar Medium) (kT1 = 0.27± 0.1 keV) R = 15 1pc 16 ± υ = k T = 470 30km/s 14 shell 3¯m B shell =(4.6 0.3) 10 km ± ± ⇥ 3 r ⇤ n0 = nshell/4=(0.25 0.8) cm υ 2 R 3 n − E =1.53 1042 shell shell 0 erg = (0.7 0.4) 1051 erg ex ⇥ km/s pc cm3 ± ⇥ ✓ ◆ ✓ ◆ ⇣ ⌘ 2 R ⌧SNR = = 13 1kyr ⌧c = 230 ky 5 υ ± ⌧ (Using Sedov-solution ) We reconfirmed the age discrepancy ⌧ ⌧ c SNR 4. Properties of the SN explosion CTB109! Ejecta (kT2 = 0.61 keV) 10 • Abundance pattern of the ejectaEjeCta component Abundace is slightly over 1 solar. ! 1 Solar • SimilarTypiCal Core-Collapse SNR to theoretical O Ne Mg Si Fe model of M ~! 0.1 10 12 14 16 18 20 22 24 26 ! ! ! 15~25 M◉ (?)! Compared with Nomoto+1997 Atomic Number Heated ISM(Inter Stellar Medium) (kT1 = 0.27± 0.1 keV) R = 15 1pc 16 ± υ = k T = 470 30km/s 14 shell 3¯m B shell =(4.6 0.3) 10 km ± ± ⇥ 3 r ⇤ n0 = nshell/4=(0.25 0.8) cm υ 2 R 3 n − E =1.53 1042 shell shell 0 erg = (0.7 0.4) 1051 erg ex ⇥ km/s pc cm3 ± ⇥ ✓ ◆ ✓ ◆ ⇣ ⌘ 2 R ⌧SNR = = 13 1kyr ⌧c = 230 ky 5 υ ± ⌧ (Using Sedov-solution ) We reconfirmed the age discrepancy ⌧ ⌧ c SNR 4. Properties of the SN explosion CTB109! Ejecta (kT2 = 0.61 keV) 10 • Abundance pattern of the ejectaEjeCta component Abundace is slightly over 1 solar. ! 1 Solar • SimilarTypiCal Core-Collapse SNR to theoretical O Ne Mg Si Fe model of M ~! 0.1 10 12 14 16 18 20 22 24 26 ! ! ! 15~25 M◉ (?)! Compared with Nomoto+1997 Atomic Number Heated ISM(Inter Stellar Medium) (kT1 = 0.27± 0.1 keV) R = 15 1pc 16 ± υ = k T = 470 30km/s 14 shell 3¯m B shell =(4.6 0.3) 10 km ± ± ⇥ 3 r 51 ⇤ n0 = nshell/4=(0.25 0.8) cm Explosion ~ 10υ 2 R 3 n erg − E =1.53 1042 shell shell 0 erg = (0.7 0.4) 1051 erg ex ⇥ km/s pc cm3 ± ⇥ 230 k(✓ ◆τC✓) > 13 ◆ ⇣ ky⌘ (τSNR) 2 R ⌧SNR = = 13 1kyr ⌧c = 230 ky 5 υ ± ⌧ (Using Sedov-solution ) We reconfirmed the age discrepancy ⌧ ⌧ c SNR 5. Age problem! ⌧c ⌧SNR special case for 1E 2259/CTB109 ? => Magnetars! Comparison of Age Estimations (NS-SNR) • Characteristic age! 1E2259+586/CTB109 – Assuming Constant B-field! OveresYmated – Valid for normal Pulsars! 5 10 2 n P !˙ B ! ⌧c / ) ⌘ (n 1) P˙ − 104 Concept of Characteristic age P B P P˙ P˙ Characteristic Age Characteristic Crab log / 103 p log t 103 104 105 Age of SNR t ⌧ 230 kyr is too old for CTB109, no longer observed c Caracteristic ages of Magnetars can be overestimated 6. Solving the age problem with B-field decay (1)! Example for $ dependence • For Magnetars ! 1012 Magnetic Field – 11 Const B B-Fields are decaying! 101015 – Overestimations are reasonable! 1010 (G) conversationally B (T) B • Hints to B-Field evolution! 1010129 • A simple B-field decay model! 108 108 Characteristic age @B 106 ! 1+↵ (Colpi+2000) = aB ↵ 4 10104 @t − ⌧B 1/aB0 ) 2 ⌘ 102 (yr) 10 yr c B(t)=B exp ( t/⌧ )(↵ = 0) ( 0 B 00 ) − c 1010 " B -2 2 B(x)= 0 (↵ = 0) 10-10 1/↵ 10-4 ) (1 ↵t/⌧B) 6 − 1010-62 10-4 10-2 100 102 104 Time (yr) (yr) 101 real t / c Which $ is suitable for Magnetar (1E 2259/CTB109) ? 100 10-6 10-4 10-2 100 102 104 106 Time (yr) 7. Solving age problem with B-field decay (2) ! • Applying B-field decay to 1E 2259+586/CTB109! – Conditions => “"c -B”, age of CTB109! Solutions B evolutions CTB109 4 B0 = 3.16e+14 G 17 α=2.0 3 (G) 1.0e+15 B 15 α=0.0 2 3.16e+16 log 13 1E 2259+586 1 (yr) 1.0e+16 2 B 0 10 ⌧ snr 3.16e+16 ⌧ -1 Preferred area → / 1 log c 10 1.0e+17 ⌧ 1E 2259+586/CTB109 -2 1 (hour) (Month) -6 -4 -2 0 24 0.0 0.5 1.0 1.5 2.0 2.5 Time log(yr) α (decay index) • $=0 → Rapid decay, unphysical long delay ("B) ! • $=2 → Moderate, needs too strong initial B-Field .. ?! 1.5 < $ < 1.8 is preferred 8. Magentars form a young population! • %c of magnetar have been greatly overestimated! – Magnetars must be younger than we thought so far! • Difference in spatial distributions strengthens this view! – Travel distance from the Galactic plane (Birth place) ∝ true age! -6 -4 -2 Galactic Spatial Distributions 10 10 10 – Magnetars appear to be! c Num/Century " 8 much more concentrated ! 10 to the plane! 106 υmag υpsr 104 ' (Tendulkar+2012) Characteristic age 102 100 101 102 statistically younger ! Number than others ! 10 Number 1 Nakano+2013! submited 1.0 0.0 1.0 D sin(Gb) kpC 9. Summary ! • We analyzed Suzaku X-ray data of the SNR CTB109 hosting magnetar AXP 1E 2259+586.! • Abundance profiles, and the explosion energy of CTB109 are not significantly different from those of typical SNRs.! • However, we reconfirmed the huge age discrepancy between characteristic age of 1E 2259+586 and the Sedov age of CTB109.! • Introducing B-field decay of 1E 2259+586, the age problem was solved.! • Magnetars are much younger than previously thought and can account for a considerable fraction of new-born NSs.! • Spatial distributions of magnetars are narrower than that of other pulsars, which provides further supporting evidence of young population view of magnetars.!.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us