Observations on Icosagonal Pyramidal Number

Observations on Icosagonal Pyramidal Number

International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 7 (July 2013), PP. 32-37 www.irjes.com Observations On Icosagonal Pyramidal Number 1M.A.Gopalan, 2Manju Somanath, 3K.Geetha, 1Department of Mathematics, Shrimati Indira Gandhi college, Tirchirapalli- 620 002. 2Department of Mathematics, National College, Trichirapalli-620 001. 3Department of Mathematics, Cauvery College for Women, Trichirapalli-620 018. ABSTRACT:- We obtain different relations among Icosagonal Pyramidal number and other two, three and four dimensional figurate numbers. Keyword:- Polygonal number, Pyramidal number, Centered polygonal number, Centered pyramidal number, Special number MSC classification code: 11D99 I. INTRODUCTION Fascinated by beautiful and intriguing number patterns, famous mathematicians, share their insights and discoveries with each other and with readers. Throughout history, number and numbers [2,3,7-15] have had a tremendous influence on our culture and on our language. Polygonal numbers can be illustrated by polygonal designs on a plane. The polygonal number series can be summed to form “solid” three dimensional figurate numbers called Pyramidal numbers [1,4,5 and 6] that can be illustrated by pyramids. In this communication we 32 20 65n n n deal with Icosagonal Pyramidal numbers given by p and various interesting relations n 2 among these numbers are exhibited by means of theorems involving the relations. Notation m pn = Pyramidal number of rank n with sides m tmn, = Polygonal number of rank n with sides m jaln = Jacobsthal Lucas number ctmn, = Centered Polygonal number of rank n with sides m m cpn = Centered Pyramidal number of rank n with sides m gn = Gnomonic number of rank n with sides m pn = Pronic number carln = Carol number mern = Mersenne number, where n is prime culn = Cullen number Than = Thabit ibn kurrah number II. INTERESTING RELATIONS 20 6 5 1) pn32 p n p n t3, n Proof 20 3 2 3 2 2 2pn 4 n 3 n n 2 n n 4 n n 20 5 6pn 2 p n 4 t3, n www.irjes.com 32 | Page Observations on Icosagonal Pyramidal Number 20 5 5 2) pn n cp n p n Proof 20 3 3 2 2pn 5 n 3 n n n 2 n 55 2cpnn 2 p 2 n 20 5 5 pn n cp n p n 20 20 3) pn11 p n 21 g n Proof 20 3 2 pn1 6 n 19 n 15 n 2 20 3 2 pn1 6 n 19 n 7 n 5 20 20 2pnn11 2 p 8 n 2 20 20 pnn11 p 2 2 n 1 1 4) The following triples are in arithmetic progression 8 14 20 i) pn,, p n p n Proof 3 2 3 2 20 8 6n n 5 n 2 n n n pp nn 22 4n32 2 n 6 n 2 2 14 2 pn 4 12 20 ii) pn,, p n p n Proof 3 2 3 2 4 20 2n 3 n n 6 n n 5 n pp nn 62 10n32 3 n 14 n 2 6 12 2 pn 12 16 20 iii) pppnnn,, Proof 3 2 3 2 12 20 10n 3 n 7 n 6 n n 5 n pp nn 62 14n32 3 n 11 n 2 6 16 2 pn www.irjes.com 33 | Page Observations on Icosagonal Pyramidal Number 20 5 5) pn50 p n t3, n Proof 20 5 3 2 2 2pnn 2 p 4 n n 5 n n 5 4 2ptnn 5 2 3, N 20 pn 4 6) 2 5 6 ptNN 3, n1 n Proof N 20 p 2 2n 6nn 5 n1 n 2 65nn 20nn 1 7) 2p 2 Tha2nn 1 2 mer 2n Proof 20 3n 2 n n 2p 6 2 2 5 2 2n 2p20 n 2nn 2 2 3 2 1 2 1 2 2n 21Tha2nn mer 8) The following equation represents Nasty number 20 15 6 i) 12 pn cp n 2 p n n Proof 32 20 65n n n p n 2 53n3 n n 3 n 2 n 22 2 15 6 n cp 2 p n nn2 2 20 15 6 n p cp 2 p n n n n 2 Multiply by 12, then the equation represents Nasty number 2 p20 ii) n n 5 n Proof www.irjes.com 34 | Page Observations on Icosagonal Pyramidal Number 20 3 2 2pn 6 n n 5 n 20 2 p 2 n nn 56 n p20 9) n n s 24 g n nn Proof 20 p 2 n 65nn n 2 6n 6 n 1 2 2 n 1 n 4 p20 n n s 24 g n nn 20 10) 2pn 9 n 2 nct12, n t 7, n Proof 2 20 6n 6 n 1 5 n 6 pn n 22 5n2 3 n 9 n nct 12,n 22 9n nct t 12,nn 7, 2 20 2pn 9 n 2 nct12, n t 7, n 20 11 11) 2pn2 4 p n t 66, n 42 mod107 Proof 20 3 2 2pn2 6 n 37 n 69 n 42 3 2 2 2 3n n 2 n 35 n 34 n 107 n 42 11 4pnn t66, 107 n 42 20 11 2pn2 4 p n t 66, n 42 mod107 20 20 12) pn3 p n 3 2 t 56, n 29 g n 176 Proof 20 3 2 2pn3 6 n 55 n 163 n 156 20 3 2 2pn3 6 n 53 n 151 n 138 20 20 2 2 pnn33 p 2 54 n 6 n 147 20 20 2 pnn33 p 54 n 52 n 29 2 n 1 176 www.irjes.com 35 | Page Observations on Icosagonal Pyramidal Number N 20 13) 2 pn t3, N 6 t 3, N 5 sq N n1 Proof N 20 3 2 2pn 6 n n 5 n n1 65t3,NNN sq t 3, 20 8 12 18 9 14) 4pn 7 n 6 cp n cp n cp n 2 cp n 4 t3, n Proof 20 8 12 2pn 6 cp n cp n 2 t3, n 4 n (1) 20 18 9 2pn cp n 2 cp n 2 t3, n 3 n (2) Add equation (1) and (2), we get 2p20 2n 15) jal2n 2 Tha 2 n carl8 n mer n 2n Proof 2p20 n 2nn 2 6 2 2 5 2n 2n 2 n 2 n n 1 n 42 132 12 2 1218 20 14 16) pnn p n is a cubic integer Proof 3 2 3 2 20 14 6n n 5 n 4 n n 3 n pp nn 22 3 nn 20 14 3 pnn p n n 20 6 17) 24PENn p n 66 p n 7 n p n is biquadratic integer Proof 20 4 3 2 24PENnn p n 66 n n 6 n 4 3 2 n 66 n ( n n ) 7 n 20 6 4 24PENn p n 66 p n 7 n p n n www.irjes.com 36 | Page Observations on Icosagonal Pyramidal Number REFERENCES [1]. Beiler A. H., Ch.18 in Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, New York, Dover, (1996), 184-199. [2]. Bert Miller, Nasty Numbers, The Mathematics Teachers, 73(9), (1980), 649. [3]. Bhatia B.L., and Mohanty Supriya, (1985) Nasty Numbers and their characterization, Mathematical Education, I (1), 34-37. [4]. Bhanu Murthy T.S., (1990)Ancient Indian Mathematics, New Age International Publishers Limited, New Delhi. [5]. Conway J.H., and Guy R.K., (1996) The Book of Numbers, New York Springer – Verlag, 44-48. [6]. Dickson L.E., (1952), History of the Numbers, Chelsea Publishing Company, New York. [7]. Gopalan M.A., and Devibala S., (2007), “On Lanekal Number”, Antarctica J. Math, 4(1), 35-39. [8]. Gopalan M.A., Manju Somanath, and Vanitha N., (2007), “A Remarkable Lanekel Sequence”, Proc. Nat. Acad. Sci. India 77(A), II,139-142. [9]. Gopalan M.A., Manju Somanath, and Vanitha N., (2007),“On R2 Numbers”, Acta Ciencia Indica, XXXIIIM(2), 617-619. [10]. Gopalan M.A., and Gnanam A., (2008), “Star Numbers”, Math. Sci. Res.J., 12(12), 303-308. [11]. Gopalan M.A., and Gnanam A.,(2009),“Magna Numbers”, Indian Journal of Mathematical Sciences, 5(1), 33-34. [12]. Gopalan M.A., and Gnanam A., (2008) “A Notable Integer Sequence”, Math. Sci.Res. J., 1(1) 7-15. [13]. Horadam A.F., (1996), Jacobsthal Representation Numbers, Fib. Quart., 34, 40-54. [14]. Meyyappan M., (1996), Ramanujan Numbers, S.Chand and Company Ltd., First Edition. [15]. Shailesh Shirali, (1997), Primer on Number Sequences, Mathematics Student, 45(2), 63-73. www.irjes.com 37 | Page .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us