Operators on Di Erential Forms Abstract Index Notation Leibniz Commuting Inner Products

Operators on Di Erential Forms Abstract Index Notation Leibniz Commuting Inner Products

Differential forms Abstract index notation Coee & Chalk Press (p + q)! Ivica Smolić cbnd (α ^ β)a :::a b :::b = α β 1 p 1 q p!q! [a1:::ap b1:::bq ] 1 (?!) = ! a1:::ap ap+1:::am p! a1:::ap ap+1:::am M is a smooth m-manifold with a metric gab which has s negative b eigenvalues. Metric determinant is denoted by g = det(gµν ). (iX !)a1:::ap−1 = X !ba1:::ap−1 · Base of p-forms via wedge product, (d!)a1:::ap+1 = (p + 1)r[a1 !a2:::ap+1] b µ µ X µ µ (δ!)a :::a = r !ba :::a dx 1 ^ ::: ^ dx p = sgn(π) dx π(1) ⊗ · · · ⊗ dx π(p) 1 p−1 1 p−1 π2Sp p(m−p)+s 2 2 2 Thm. ?? = (−1) ; iX = d = δ = 0 · General p-form ! 2 Ωp, Thm. £X (f) = δ(fX) 1 µ1 µp ! = !µ ...µ dx ^ ::: ^ dx a a p! 1 p Thm. δ(fα) = iX α + fδα with X = r f · Unless otherwise stated, we assume: Thm. iX d?α = ?(X ^ δα) f 2 Ω0 ; α; ! 2 Ωp ; β 2 Ωq ; γ 2 Ωp−1 ; X; Y 2 TM Leibniz p · Generalized Kronecker delta iX (α ^ β) = (iX α) ^ β + (−1) α ^ (iX β) p δa1···an := n! δ [a1 δ a2 ··· δ an] d(α ^ β) = (dα) ^ β + (−1) α ^ (dβ) b1··· bn b1 b2 bn £X (α ^ β) = (£X α) ^ β + α ^ (£X β) 1 2 n 1 n µ1···µn det(A) := n! A [1A 2 ··· A n] = A µ1 ··· A µn δ1 ··· n 1 2 n 1 ··· n n! A [µ1 A µ2 ··· A µn] = det(A) δµ1··· µn ! a ···a a ···a m − n + k a ···a Commuting δ 1 k k+1 n = k! δ k+1 n a1···akbk+1··· bn k bk+1··· bn α ^ β = (−1)pqβ ^ α m p 1 m m(p+1)+s · Volume form 2 Ω , := jgj dx ^ ::: ^ dx iX ?α = ?(α ^ X) ; iX α = (−1) ?(X ^ ?α) s p 1··· m µ1···µm (−1) µ1···µm µ ···µ = jgj δµ ···µ ; = δ 1 m 1 m pjgj 1 ··· m [£X ; £Y ] = £[X;Y ] ; [£X ; iY ] = i[X;Y ] ; [£X ; d] = 0 a1···akak+1···am s ak+1···am a ···a b ···b = (−1) k! δ 1 k k+1 m bk+1···bm £X ?α − ? £X α = (δX) ?α + ?αb with α := p( gbc)g α ba1:::ap £X b[a1 jcja2:::ap] Operators on dierential forms d ? = (−1)p+1 ? δ ; δ ? = (−1)p ? d p p−1 ?∆ = ∆?; d∆ = ∆d ; δ∆ = ∆δ · Contraction with vector iX :Ω ! Ω iX f = 0 ; (iX !)(X1;:::;Xp−1) = !(X; X1;:::;Xp−1) Inner products · Hodge dual ? :Ωp ! Ωm−p 1 a1:::ap !µ ...µ (α j !) := αa1:::ap ! ?! = 1 p µ1...µp dxµp+1 ^ ::: ^ dxµm p! p!(m − p)! µp+1...µm Normalization of the volume form, ( j ) = (−1)s. s ?1 = ;? = (−1) ; iX = ?X Thm. (α j !) = α ^ ?! = ! ^ ?α = (−1)s (?α j ?!) · Exterior derivative d : Ωp ! Ωp+1 Thm. (X ^ γ j α) = (γ j iX α) 1 σ µ1 µp s d! = @σ!µ ...µ dx ^ dx ^ ::: ^ dx Thm. (X j Y )(α j α) = (−1) (i ?α j i ?α) + (i α j i α) p! 1 p X Y X Y p p · Lie derivative £X :Ω ! Ω Z hα; !i := α ^ ?! M £X ! = (iX d + diX )! Thm. If s = 0 then hα; αi ≥ 0 and hα; αi = 0 i α = 0. · Coderivative δ (or dy):Ωp ! Ωp−1 Thm. If s = 0 then −∆ is a positive operator in a sense that δf = 0 ; δ! = (−1)m(p+1)+s ? d ? ! h!; −∆!i = hd!; d!i + hδ!; δ!i ≥ 0 · Laplace–Beltrami operator (Laplacian) ∆ : Ωp ! Ωp Consequently ∆! = 0 i d! = 0 and δ! = 0. ∆ = dδ + δd = (d + δ)2 Pullback Maxwell’s equations (m; s) = (4; 1) For a C1 map φ : S ! M, we dene φ∗ :Ωp(M) ! Ωp(S), ∗ dF = 4π ?jm ; d ?F = 4π ?je (φ !)(X1;:::;Xp) := !(φ∗X1; : : : ; φ∗Xp) a a @(xµ1 ◦ φ) @(xµp ◦ φ) Electro/magnetic decomposition via X with N = XaX : ∗ (φ !)σ1...σp js = ··· σ !µ1...µp jφ(s) @yσ1 s @y p s E = −iX F ; B = iX ?F φ∗(α ^ β) = (φ∗α) ^ (φ∗β) ; φ∗d = dφ∗ −NF = X ^ E + ?(X ^ B) φ∗(?!) 6= ?(φ∗!) N.B. N(F j F ) = (E j E) − (B j B) N(F j ?F ) = −2 (E j B) Stokes’s theorem. Let M be a smooth orientable m-manifold boundary @M and inclusion { : @M ! M. Then for any compactly Maxwell’s equations via δ = −?d? and ! = −?(X ^ dX), supported ! 2 Ωm−1(M), (E j iX dX) (B j !) Z Z −δE = − + 4π(X j je) d! = {∗! N N M @M (B j i dX) (E j !) −δB = X + + 4π(X j j ) N N m Z −dE = £X F + 4π ?(X ^ jm) Corollary hdγ; αi + hγ; δαi = γ ^ ?α dB = £X ?F + 4π ?(X ^ je) @M Green’s identity for α; β 2 Ωp(M) Z Z ∆α^?β−∆β^?α = δα^?β−δβ^?α+β^?dα−α^?dβ M @M Killing vectors a a Thm. For a Killing vector K with N = KaK we have Frobenius’s theorem. Let M be a smooth m-manifold and D a k- dim distribution (subbundle of TM), dened by (m − k) linearly in- £K K = 0 ; δK = 0 ; d?dK = 2 ?R(K) ; dN = −iK dK dependent 1-forms fθ(1);:::; θ(m−k)g, so that at each point p 2 M T (i) £K α = δ(K ^ α) + K ^ δα ; £K ?α = ? £K α we have Djp = i Ker(θ jp). Then the following conditions are equivalent Thm. (m; s) = (4; 1). Let (M; gab) be a Lorentzian 4-manifold with • D is involutive, (8 X; Y 2 D):[X; Y ] 2 D a the Killing vector eld K . Then the twist 1-form !a, dened as • D is totally integrable: for any p 2 M there is a nbh Op and i b c d functions hj ; fj : Op ! R, such that ! := −?(K ^ dK) ;!a = abcdK r K m−k satises the following relations (i) X i θ = hj dfj j=1 d! = −2?(K ^ R(K)) ; Nδ! = 2 (! j dN) • the condition (! j !) = (dN j dN) − N∆N − 2NR(K; K) θ(1) ^ ::: ^ θ(m−k) ^ dθ(i) = 0 NdK = ?(K ^ !) − K ^ dN holds for any i 2 f1; : : : ; m − kg. N(dK j dK) = (dN j dN) − (! j !) K ! δ = 0 ; δ = 0 De Rham cohomology N N 2 dN (! j !) + 2NR(K; K) r r δ = − closed forms Z (M) = f! 2 Ω j d! = 0g N N 2 exact forms Br(M) = ! 2 Ωr j 9 γ 2 Ωr−1 : ! = dγ E (! j B) 4π δ = − (K j je) r r r N N 2 N HdR(M) = Z (M)=B (M) Pm r r B (! j E) 4π Euler-Poincaré characteristic χ(M) = r=0(−1) b with Bei δ = − − (K j jm) r r N N 2 N numbers b = dim HdR(M). For n ≥ 1 the de Rham cohomology n r n R groups of spheres S are HdR(S ) = (δr0 + δrn) . Thm. If M is a connected smooth manifold with nite fundamental r group, then HdR(M) = 0. Poincaré lemma. Every closed form on a contractible open set is exact. Hodge decomposition theorem. On any closed orientable Rieman- nian manifold M, for any ! 2 Ωp(M) there is a unique global de- composition ! = dα + δβ + χ with α 2 Ωp−1, β 2 Ωp+1 and χ 2 Ωp is harmonic, ∆χ = 0. ∗ C&CP.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us