EuclideanGeometry Thc subjectrnatrer of thrs boot rs non-Eucldcr onem-usl know wna, Euc,idean Beonre,r), . 1i,,.;liJlil.lJ,llil;li::;i::,T::.: mofe.dimculrtask th.in it ,nirhr lpp.af rniria,)"i].;llil'Jll r,, r:,",.;, ."1 .*r,'",r,,"i"t";: ;;,;;;":;;;:,., producethe vaflou! cunEnlr] ," accepreddesc prions.sirtch areari basedon rhcrerarnerr ofDavid Hitberr recenrwort o86: 1e.'.r).Nee,ess ro s;). fu*. g_.,.",r,,,. ;;; ;;;,;;;:;;;1";'i::,,"", to bedeficient and op r for yer orherchar.acter.rzatrons jde.ar ,e.,r l| new oI rhesccons ions,the rcaders ura\ no,be \umri .ed , , nd,,r,.Ju,r.. n., .hJ,en,,,e\.,r_ . ::l',.."".,' ".,..,";'',_.:; rroridi,rg^l^ rheor s'i,h:r shofthisror).orrhesubjec, ,".,",0"ou",.i.ii;:i',",Jft ili:.ll''''t, -o - Ill Anlntroduction to EuclideanGeomerrv Geomctrfin rhesense ol mensurrrionof ti!ui de\eroped bI malr)cuhurer and datesback to mrr"""i,'"i ii"',i;",ii " T ip"lll"**'rl *,"''r,,"*l ;:;;;; ;i""iil:;:;"11.:;:nil j;J,i,iJT, Ii,i.J,li.: :i:I,l.rreason,was-creared by rheG.eeks. Hrsrrlrrlrns ::ii"Jll: asr.erhar rh€ orisn of gcomerr)."" t". ,.,"J i".* ,,, tlrehres of Thatesol Milerus Ncirher or.r,i. r*.;;;-;::;#;T,:i:::il'ii:i,lirhe.\ i':filiijlli:'J:Jjli,J,il: eclips€-*npr,,r,,""u,,of 585Bc. jr is believcdthar hc ln.eddunnr rhc;jrrh cenru,-;it ;,i,,ili;."il;, probablyt'om forrotrel in m.uv orher ".." 'Lrd counrries.rnttcenrurres 1, r, fr ,,,,rr. ,t,"i r," ,- ro a:uti.e |harborh ioundhis conr : burior\ useluta|d cared . p,",o.]. ,r,.",-i,,"". ,n" lutureby ilcorTrorarngthem ".,g1 rnroi(s cd!carionorsj.sren s;me rrrccreete orihi o"r *r-,'..^-e boththe denrocraLjctbrm of governmenr and$e idcaof r trratht r,I .r p."., ,, to..e\e.) ciLizenrhar he " slr(jutdbe abte ro argn.borl cogurr4 ura perurLsiverr.or,;"" "",;,,p*"r,. srxtr cenrury ,r," ,ii" ,. Bc,rtre rask of edu.aunsrhcif r.e'o{ uar.n". ,u rt ,ii',' s),slen ."qo,.;,t il,i ;;;; ;;t,t."l u'a\ assmed by rheSotirjsrs. t.hel $.er€irrneranl pedagogucs " rrarnng f,n.rn*,ry theirpupls mos t rnrhetorjc. Since rheJ i,,, r r,,nr, tl. ,1,,,,,.u,,n"lro -ra.,rc, of ; i:,;,.",;;;:,r,., Seometry,robeuseful rool\inlhis rairnng. tnrlc, L,erLrontofndanr.hcrnrh.ircLrni.utur,uno"";l was.eser red for psteriry js It let lillelt,rhat DemocrirLr\ (ca 4t0 p.om,rgar"an,to.i" tn"",, ;,;.,,;;,;;,;i E ;;il:,:,::1:,,illlli,ll':"Ji:fiil::[t:TJ; schoots.rr is n,orethan liketl. hou ever " thathrirlen,"'*,.";, *" ,,lii 1,;l;..,:;;,,"*' a.s,,uc,ure,ha,besins*',n*u,",,""**,""',i"uliii:,iLj'"xliTll",i'."";:1iilj".,:":l'i:l:,,,Il;Eudo.\us(408 355rBc) wa\ one of rheUrs "; nasnol surlived.and our intormarion abouthis acconrpxrtnnrntssecond hand Thereis no doubr. ho$ever,rhar he \rs a fiAFrxremathen'ocirn ^ u,ilhnn crcexcnr undcLsLandrn.r;i ,t,".;;;i";i;.-,,, h,, .'.; il"H::l':iiTH,::':l,1il:i i;ilii,H:tii:i:.J wnosccontent are ii,illtxi:::,Ti.i:iI;1,:::,iilTl Book' I I\ .,e. th( Jea-rerr,ur Jr. Jr J (r,. tf! Bnoh.v\|.ne||eur\ t fe.m.I rr "rut ar ur BooksVlt_IX rnettr,rr ol nunrherr Book X rhe rheor) of trario at lumbcrs Books XI XIII: solid geomerrl ontetry. despilehrs fla\ s The nerl sedjon of rhrs '.u||.1 h: Jre\ ,r.<r|,rIir..ro..r,Jie Jno ner urll lh, I p,n,,f..Jnd tt,<.tJtcrnrlt.i,t.r.ujr proposriions lro tarcf books oI l_.uclidrre rtso uc'u chaprersof $is book. The readcfrs fejerftd xtcnsrveconnnenrary on, Euclid,s Elzcrb lhe nrad/ahon of Enctrdcangeomerrt il can be onnL .(.tu(l Tl. h.t . .ur..trJe. u,rnJd..1,..,.r enLronnuhtons Exercisest.l Bned)de.cnbe.he li\e, _iJ J.....r t,rJ,nnr,r. ., rtc In,,,.qrf j ( J.,. ,,.t r,,J a. rhrle\ b. Pl rnr3urri tl.€JJ. E;;;_i;" j d Ana\agoms 2. ::,1i:,t",., iilll::',,,,::,,,..,". ,,,a,..,,.tpri.n,.,1n,1,rh, r.{r,.q,. .r,. :r:ll,!e\.fbe'her,.ea. crchlnede. e..n,. rrLrr... h ADn unr r. c. pr,,t(l1 ' "., L t.,.,,' f,fp, " FromBook 0ne DEFINITIONS L Apri,/ is thar \rhich llas ro ta.r Srnceone cannotdeine \onrerlnr)Sb! snntl\,tisrnu a| rh. tropcnies ir doesnr{ have lhis cunnoL be takenas a genurnedefinrrion. tucljd In!sr ha\e rea|zed Lhxre!er) d.fillirnnr lnusrrctr on tre!roust] definedre,rns. and so it jmf,,ssibte is logjcaly lo dehnc all ot urc.s rerms.tr)ncad, ths:hould be vreu,edas an attempton Euctid s pai to tellhjs readersrl)rr his poi is sorncrhlrgtjke a doLone rnarks with a pcncil, but ar dre jr jJe, santctinre is an Jartrerthrn r |hlsical enLiri r).n;iriorr\ I and5 belos shoDldbe understoodin rhesaDre \LrI 2. A llr. is breadrl esslengrh Euclid s l,e is our .,/rt 3. The enr..r,iri.r lr1a line de porDh Sinceboth pojn ts and|ncs hale . aLead) beendc h n ed andrhe so d .rrr?,rn ! is subsequently used 10denoictheboDdary(fan)h8ure,!hats)c!er.itishardft)seeexacttywhxtrstcingdeJinedhere It.is possible thar Euclid fett rxt haljrg detinedborh tonrs ard lrncs ]re nou Deertcjto ctarirr rne telJljonshp berucPnrlfn Ir is rmplr!rtin rll|sJehnrU, rh,rre\ef\ rnehas crdpoinrs. erscquenlly. Eucljds lire rs xr ract a nnrre^ ffc, and hr\ rrr:lghr linr\, r,, bc dehDcLlnexr. are l]r ticr lne scgnrerts MDch has beenmade of the Greets iDsisrence(nr tbe finrrencs\of drc ohjecLs.f rh€ir in\esljgrrron\ Neverrhctcss,ELrctid ts qultepragmatic abou r ftis rssuc when e nec.rafis. rs rr rrocsin rhc statemcnt ot propositronl 2 below,Euclid is wiUiDgro bendhi\ o\!n rulesand meDrion r|iiniLe sLraighrtrnes 4. A sffaisht line i! at;ne \,,hichlies ere|ly s,ith rhcpoi s on itsell This too is a soDre\\,har obs.ur€ scnrencc lr rs possiblerhat rhe poi|rs () s.hrch Lhisdeiinrrolr refersne theexireniries ofthc pre\rousore Thus rhisdefinirrcn \lroul<t te understood* sa1:ngrlat ofill the rLxnedr lrnes iurnrfex frir rn tornrs.the nrdrgtr. hnc is ilc ones,bi.h.ousists ol alt rhe pornL,hal lredIe.,) r,.ber$e,.,nerr, c!e1t,.,r.,... .,dd., 5. A r. rh., qni. t, hd .er!,r .,ra I r( o,r J,r , 6, The exrremiriesof a r,'/.r.. aretines TlisInfl..tin r,.denn _ i.r.,fi -!( ,..)4t rrrc.,r,l L Aptdr, td^ci1,.r J.e\ti., rr\c\-,tr vr,t .t. .!t, Possiblythh mc.ns thrr rhee\ltmiiies ol a trane nura.e .ltc srrarghLlrnes and rhal rhc surace lrese\,cnly $ith ihcnr. 8 Apl.'r. dngls i\ the m.rrnarior ro onea'odrcr of rwo ri'es in r frane whrch meerone anorher and do not lie in a st.aightline 9. And Dten the lines colrrajninsthe rngte aresraight rherngle L\ca|ed fdr r/rrd It is clearfronr Lheabo\e rwo deh irioDsrhrr ELrclidh,s so r. interc\Lin flritjneal rngles. Ie, anglesformed b) cunes r trer rlr.rnby srraighLtine\ Ne\,erthetes:.he n,bscquenllyrefer ro suchangles only ju once. P()fosthon t6 of BooI ll1. $Icr. he sr),\ that the anglcbctween rle Iangenrro a circle and irs c;cujnfercncejs smrller rhrn an) rc.r|rnert x|glc Ir h,s b;cn fosrted thar geomebiclans of therime wcrt dxllyns wirlrsuch urrlle\ wirhour crrnjnr ro dnyserrcu\ .onclusons and Ihat Enclid fell rhe necd to l.kno$tcd8e thcjr elt Ls ru.L\ no i sm,ghl trnc setnf ur l slLrtshrlme nrakosrIc rdla.enr orglcs eqnnl or oe rnsres.rs Loone another,each fiCr..lrd th. surrltrt t,rc sLrndir!!D rtrcolhci rs ca ct ar,tpdttrLutdtta thard1 j l hls inlocno[s took g dcnniuonhrs L\rodrt oi angles Docshe hjw equr|L) in nrasuk I rr )t\,loreo!er: consnterce lhe rsjtreofthc c\breLL. ( by equaliL).is clearty sidestcl)f.d Th. trlrcr ,ss cqL',,r1).rhe rudrorbelicves that l_tLrclidi\ r(ifenins Loequatit).ot.mea{It rarhcr rtrrn co,e,uerce A-,noredetaitcd di*rssio,) 01rh..s. of equ.rt,r) n t.hr L:t.t.rt\ l. st,..,,1",i.,;",,,;; i,,,,,.,," tl. Ar r/r4. angtcis u rnllc lfe er rhrn r Jrshtrnile o' 11 ""'"' 1 'eh'' 13. Ahr1,,, n r..n.U\ tr., .,,,..,, ., ,,. ,., li)'-'r'r'" ,,',"",.' ,1i,"' r ptJn(lielrr !lnturmd hJ I oneiire $ch rharx lhc slrrighltincs laltins nrcpoll-Id;r1,r-,:,- \ ..r..,i, up.n rl lrcL L ur.,.rrt rr..r.t,, | .r.. Jr .r1"1 ro. qnr rtrL . p.rnr (dti-.t rt.e,, ., , ,,t ,, . ,t- 17.A,.liahvet al rhc.rcte rs an! soatlh Ln. d.awr thrrrh rhece|lcr anil ler|nlnrrediD both djfectionsby the cncuirfererce olrtrc urcie. ur sch a srlr'hr hoc at$ brse.rsthe cjfctc. 18. A rerln n.i c LsLbe ltgur. conraineitbl r}r rd t}" .s,r? crr off b) ,1 the ol rhesemrcrr.le is ,,," *." *" ,,."llileLci 'rNmferu.e -^.Dd ^ 15. R.tilihcdt fisu"s Ne rhosc{,hj.lr " ry e,J,',;;;;,;,,;,;:,ilJ::lre co l:',:'l:i5:l,j;;;.liiij::1j:ili:;:; Ihan"o,',"',"alour srfatshr'r,.i]ines. li::::: .l ,:1,,j.'1,. an L'lttttdt dt rlLutlL .11 lr:^, )\.txar lvrlch rras|ls rirrccsjdes equat, an ,rnql, that\\hi!h hasr$,, ,rde\ i,.,.cr.r oi i^ Jlof. ellrAt tttr) L tt'tlr" tttdiill' qhich jr' srdesunequat. rhal has th.ee of t tateral tiEstes. x titht arytt.t jtrdnrl..is rhar utich argl..i_21-,Furrhef, has ! righL angtc.an obtujr r?rr8l. rharwhi.h h.rsa. ohrusean!te .,,S/./ r/rr?qL,rbrr$,hich has irs Lhrec i\.both cqurlaLeral.nd fishr angled.rn,r/dr8 rh!( ther jr uhjch equitarfatbul not.ighrmgted:aDd r1 | 1,,.,n..Jn.l \ .qr.it..,Jr .eq.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages17 Page
-
File Size-