Euclidean Geometry

Euclidean Geometry

EuclideanGeometry Thc subjectrnatrer of thrs boot rs non-Eucldcr onem-usl know wna, Euc,idean Beonre,r), . 1i,,.;liJlil.lJ,llil;li::;i::,T::.: mofe.dimculrtask th.in it ,nirhr lpp.af rniria,)"i].;llil'Jll r,, r:,",.;, ."1 .*r,'",r,,"i"t";: ;;,;;;":;;;:,., producethe vaflou! cunEnlr] ," accepreddesc prions.sirtch areari basedon rhcrerarnerr ofDavid Hitberr recenrwort o86: 1e.'.r).Nee,ess ro s;). fu*. g_.,.",r,,,. ;;; ;;;,;;;:;;;1";'i::,,"", to bedeficient and op r for yer orherchar.acter.rzatrons jde.ar ,e.,r l| new oI rhesccons ions,the rcaders ura\ no,be \umri .ed , , nd,,r,.Ju,r.. n., .hJ,en,,,e\.,r_ . ::l',.."".,' ".,..,";'',_.:; rroridi,rg^l^ rheor s'i,h:r shofthisror).orrhesubjec, ,".,",0"ou",.i.ii;:i',",Jft ili:.ll''''t, -o - Ill Anlntroduction to EuclideanGeomerrv Geomctrfin rhesense ol mensurrrionof ti!ui de\eroped bI malr)cuhurer and datesback to mrr"""i,'"i ii"',i;",ii " T ip"lll"**'rl *,"''r,,"*l ;:;;;; ;i""iil:;:;"11.:;:nil j;J,i,iJT, Ii,i.J,li.: :i:I,l.rreason,was-creared by rheG.eeks. Hrsrrlrrlrns ::ii"Jll: asr.erhar rh€ orisn of gcomerr)."" t". ,.,"J i".* ,,, tlrehres of Thatesol Milerus Ncirher or.r,i. r*.;;;-;::;#;T,:i:::il'ii:i,lirhe.\ i':filiijlli:'J:Jjli,J,il: eclips€-*npr,,r,,""u,,of 585Bc. jr is believcdthar hc ln.eddunnr rhc;jrrh cenru,-;it ;,i,,ili;."il;, probablyt'om forrotrel in m.uv orher ".." 'Lrd counrries.rnttcenrurres 1, r, fr ,,,,rr. ,t,"i r," ,- ro a:uti.e |harborh ioundhis conr : burior\ useluta|d cared . p,",o.]. ,r,.",-i,,"". ,n" lutureby ilcorTrorarngthem ".,g1 rnroi(s cd!carionorsj.sren s;me rrrccreete orihi o"r *r-,'..^-e boththe denrocraLjctbrm of governmenr and$e idcaof r trratht r,I .r p."., ,, to..e\e.) ciLizenrhar he " slr(jutdbe abte ro argn.borl cogurr4 ura perurLsiverr.or,;"" "",;,,p*"r,. srxtr cenrury ,r," ,ii" ,. Bc,rtre rask of edu.aunsrhcif r.e'o{ uar.n". ,u rt ,ii',' s),slen ."qo,.;,t il,i ;;;; ;;t,t."l u'a\ assmed by rheSotirjsrs. t.hel $.er€irrneranl pedagogucs " rrarnng f,n.rn*,ry theirpupls mos t rnrhetorjc. Since rheJ i,,, r r,,nr, tl. ,1,,,,,.u,,n"lro -ra.,rc, of ; i:,;,.",;;;:,r,., Seometry,robeuseful rool\inlhis rairnng. tnrlc, L,erLrontofndanr.hcrnrh.ircLrni.utur,uno"";l was.eser red for psteriry js It let lillelt,rhat DemocrirLr\ (ca 4t0 p.om,rgar"an,to.i" tn"",, ;,;.,,;;,;;,;i E ;;il:,:,::1:,,illlli,ll':"Ji:fiil::[t:TJ; schoots.rr is n,orethan liketl. hou ever " thathrirlen,"'*,.";, *" ,,lii 1,;l;..,:;;,,"*' a.s,,uc,ure,ha,besins*',n*u,",,""**,""',i"uliii:,iLj'"xliTll",i'."";:1iilj".,:":l'i:l:,,,Il;Eudo.\us(408 355rBc) wa\ one of rheUrs "; nasnol surlived.and our intormarion abouthis acconrpxrtnnrntssecond hand Thereis no doubr. ho$ever,rhar he \rs a fiAFrxremathen'ocirn ^ u,ilhnn crcexcnr undcLsLandrn.r;i ,t,".;;;i";i;.-,,, h,, .'.; il"H::l':iiTH,::':l,1il:i i;ilii,H:tii:i:.J wnosccontent are ii,illtxi:::,Ti.i:iI;1,:::,iilTl Book' I I\ .,e. th( Jea-rerr,ur Jr. Jr J (r,. tf! Bnoh.v\|.ne||eur\ t fe.m.I rr "rut ar ur BooksVlt_IX rnettr,rr ol nunrherr Book X rhe rheor) of trario at lumbcrs Books XI XIII: solid geomerrl ontetry. despilehrs fla\ s The nerl sedjon of rhrs '.u||.1 h: Jre\ ,r.<r|,rIir..ro..r,Jie Jno ner urll lh, I p,n,,f..Jnd tt,<.tJtcrnrlt.i,t.r.ujr proposriions lro tarcf books oI l_.uclidrre rtso uc'u chaprersof $is book. The readcfrs fejerftd xtcnsrveconnnenrary on, Euclid,s Elzcrb lhe nrad/ahon of Enctrdcangeomerrt il can be onnL .(.tu(l Tl. h.t . .ur..trJe. u,rnJd..1,..,.r enLronnuhtons Exercisest.l Bned)de.cnbe.he li\e, _iJ J.....r t,rJ,nnr,r. ., rtc In,,,.qrf j ( J.,. ,,.t r,,J a. rhrle\ b. Pl rnr3urri tl.€JJ. E;;;_i;" j d Ana\agoms 2. ::,1i:,t",., iilll::',,,,::,,,..,". ,,,a,..,,.tpri.n,.,1n,1,rh, r.{r,.q,. .r,. :r:ll,!e\.fbe'her,.ea. crchlnede. e..n,. rrLrr... h ADn unr r. c. pr,,t(l1 ' "., L t.,.,,' f,fp, " FromBook 0ne DEFINITIONS L Apri,/ is thar \rhich llas ro ta.r Srnceone cannotdeine \onrerlnr)Sb! snntl\,tisrnu a| rh. tropcnies ir doesnr{ have lhis cunnoL be takenas a genurnedefinrrion. tucljd In!sr ha\e rea|zed Lhxre!er) d.fillirnnr lnusrrctr on tre!roust] definedre,rns. and so it jmf,,ssibte is logjcaly lo dehnc all ot urc.s rerms.tr)ncad, ths:hould be vreu,edas an attempton Euctid s pai to tellhjs readersrl)rr his poi is sorncrhlrgtjke a doLone rnarks with a pcncil, but ar dre jr jJe, santctinre is an Jartrerthrn r |hlsical enLiri r).n;iriorr\ I and5 belos shoDldbe understoodin rhesaDre \LrI 2. A llr. is breadrl esslengrh Euclid s l,e is our .,/rt 3. The enr..r,iri.r lr1a line de porDh Sinceboth pojn ts and|ncs hale . aLead) beendc h n ed andrhe so d .rrr?,rn ! is subsequently used 10denoictheboDdary(fan)h8ure,!hats)c!er.itishardft)seeexacttywhxtrstcingdeJinedhere It.is possible thar Euclid fett rxt haljrg detinedborh tonrs ard lrncs ]re nou Deertcjto ctarirr rne telJljonshp berucPnrlfn Ir is rmplr!rtin rll|sJehnrU, rh,rre\ef\ rnehas crdpoinrs. erscquenlly. Eucljds lire rs xr ract a nnrre^ ffc, and hr\ rrr:lghr linr\, r,, bc dehDcLlnexr. are l]r ticr lne scgnrerts MDch has beenmade of the Greets iDsisrence(nr tbe finrrencs\of drc ohjecLs.f rh€ir in\esljgrrron\ Neverrhctcss,ELrctid ts qultepragmatic abou r ftis rssuc when e nec.rafis. rs rr rrocsin rhc statemcnt ot propositronl 2 below,Euclid is wiUiDgro bendhi\ o\!n rulesand meDrion r|iiniLe sLraighrtrnes 4. A sffaisht line i! at;ne \,,hichlies ere|ly s,ith rhcpoi s on itsell This too is a soDre\\,har obs.ur€ scnrencc lr rs possiblerhat rhe poi|rs () s.hrch Lhisdeiinrrolr refersne theexireniries ofthc pre\rousore Thus rhisdefinirrcn \lroul<t te understood* sa1:ngrlat ofill the rLxnedr lrnes iurnrfex frir rn tornrs.the nrdrgtr. hnc is ilc ones,bi.h.ousists ol alt rhe pornL,hal lredIe.,) r,.ber$e,.,nerr, c!e1t,.,r.,... .,dd., 5. A r. rh., qni. t, hd .er!,r .,ra I r( o,r J,r , 6, The exrremiriesof a r,'/.r.. aretines TlisInfl..tin r,.denn _ i.r.,fi -!( ,..)4t rrrc.,r,l L Aptdr, td^ci1,.r J.e\ti., rr\c\-,tr vr,t .t. .!t, Possiblythh mc.ns thrr rhee\ltmiiies ol a trane nura.e .ltc srrarghLlrnes and rhal rhc surace lrese\,cnly $ith ihcnr. 8 Apl.'r. dngls i\ the m.rrnarior ro onea'odrcr of rwo ri'es in r frane whrch meerone anorher and do not lie in a st.aightline 9. And Dten the lines colrrajninsthe rngte aresraight rherngle L\ca|ed fdr r/rrd It is clearfronr Lheabo\e rwo deh irioDsrhrr ELrclidh,s so r. interc\Lin flritjneal rngles. Ie, anglesformed b) cunes r trer rlr.rnby srraighLtine\ Ne\,erthetes:.he n,bscquenllyrefer ro suchangles only ju once. P()fosthon t6 of BooI ll1. $Icr. he sr),\ that the anglcbctween rle Iangenrro a circle and irs c;cujnfercncejs smrller rhrn an) rc.r|rnert x|glc Ir h,s b;cn fosrted thar geomebiclans of therime wcrt dxllyns wirlrsuch urrlle\ wirhour crrnjnr ro dnyserrcu\ .onclusons and Ihat Enclid fell rhe necd to l.kno$tcd8e thcjr elt Ls ru.L\ no i sm,ghl trnc setnf ur l slLrtshrlme nrakosrIc rdla.enr orglcs eqnnl or oe rnsres.rs Loone another,each fiCr..lrd th. surrltrt t,rc sLrndir!!D rtrcolhci rs ca ct ar,tpdttrLutdtta thard1 j l hls inlocno[s took g dcnniuonhrs L\rodrt oi angles Docshe hjw equr|L) in nrasuk I rr )t\,loreo!er: consnterce lhe rsjtreofthc c\breLL. ( by equaliL).is clearty sidestcl)f.d Th. trlrcr ,ss cqL',,r1).rhe rudrorbelicves that l_tLrclidi\ r(ifenins Loequatit).ot.mea{It rarhcr rtrrn co,e,uerce A-,noredetaitcd di*rssio,) 01rh..s. of equ.rt,r) n t.hr L:t.t.rt\ l. st,..,,1",i.,;",,,;; i,,,,,.,," tl. Ar r/r4. angtcis u rnllc lfe er rhrn r Jrshtrnile o' 11 ""'"' 1 'eh'' 13. Ahr1,,, n r..n.U\ tr., .,,,..,, ., ,,. ,., li)'-'r'r'" ,,',"",.' ,1i,"' r ptJn(lielrr !lnturmd hJ I oneiire $ch rharx lhc slrrighltincs laltins nrcpoll-Id;r1,r-,:,- \ ..r..,i, up.n rl lrcL L ur.,.rrt rr..r.t,, | .r.. Jr .r1"1 ro. qnr rtrL . p.rnr (dti-.t rt.e,, ., , ,,t ,, . ,t- 17.A,.liahvet al rhc.rcte rs an! soatlh Ln. d.awr thrrrh rhece|lcr anil ler|nlnrrediD both djfectionsby the cncuirfererce olrtrc urcie. ur sch a srlr'hr hoc at$ brse.rsthe cjfctc. 18. A rerln n.i c LsLbe ltgur. conraineitbl r}r rd t}" .s,r? crr off b) ,1 the ol rhesemrcrr.le is ,,," *." *" ,,."llileLci 'rNmferu.e -^.Dd ^ 15. R.tilihcdt fisu"s Ne rhosc{,hj.lr " ry e,J,',;;;;,;,,;,;:,ilJ::lre co l:',:'l:i5:l,j;;;.liiij::1j:ili:;:; Ihan"o,',"',"alour srfatshr'r,.i]ines. li::::: .l ,:1,,j.'1,. an L'lttttdt dt rlLutlL .11 lr:^, )\.txar lvrlch rras|ls rirrccsjdes equat, an ,rnql, that\\hi!h hasr$,, ,rde\ i,.,.cr.r oi i^ Jlof. ellrAt tttr) L tt'tlr" tttdiill' qhich jr' srdesunequat. rhal has th.ee of t tateral tiEstes. x titht arytt.t jtrdnrl..is rhar utich argl..i_21-,Furrhef, has ! righL angtc.an obtujr r?rr8l. rharwhi.h h.rsa. ohrusean!te .,,S/./ r/rr?qL,rbrr$,hich has irs Lhrec i\.both cqurlaLeral.nd fishr angled.rn,r/dr8 rh!( ther jr uhjch equitarfatbul not.ighrmgted:aDd r1 | 1,,.,n..Jn.l \ .qr.it..,Jr .eq.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us