Fractals.Pdf

Fractals.Pdf

<p>Fractals </p><p>Self Similarity and Fractal Geometry </p><p>presented by Pauline Jepp </p><p>601.73 </p><p>Biological Computing </p><p>Overview </p><p>History Initial Monsters </p><p>Details Fractals in Nature Brownian Motion L-systems Fractals defined by linear algebra operators Non-linear fractals </p><p>History </p><p>Euclid's 5 postulates: </p><p>1. To&nbsp;draw a straight line from any point to any other. 2. To produce a finite straight line continuously in a straight line. 3. To describe a circle with any centre and distance. 4. That all right angles are equal to each other. </p><p>5. That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, if produced indefinitely, meet on that side on which are the angles less than the two right angles. </p><p>History </p><p>Euclid ~ "formless" patterns Mandlebrot's Fractals </p><p>"Pathological" "gallery of monsters" </p><p>In 1875: </p><p>Continuous non-differentiable functions, ie no tangent </p><p>La Femme Au Miroir 1920 Leger, Fernand </p><p>Initial Monsters </p><p>1878 Cantor's set </p><p>1890 Peano's space filling curves </p><p>Initial Monsters </p><p>1906 Koch curve </p><p>1960 Sierpinski's triangle </p><p>Details </p><p>Fractals : </p><p>are self similar </p><p>fractal dimension </p><p>A square may be broken into N^2&nbsp;self-similar pieces, each with magnification factor N </p><p>Details </p><p>Effective dimension </p><p>Mandlebrot: " ... a notion that <em>should not </em>be defined precisely. It is an intuitive and potent throwback to the Pythagoreans' archaic Greek geometry" </p><p><em>How long is the coast of Britain? </em></p><p><em>Steinhaus 1954, Richardson 1961 </em></p><p>Brownian Motion </p><p>Robert Brown 1827 </p><p>Jean Perrin 1906 </p><p>Diffusion-limited aggregation </p><p>L-Systems and Fractal Growth </p><p>Packing efficiency </p><p>Axiom &amp; production rules </p><p><strong>Axiom: B Rules: B-&gt;F[-B]+B </strong><br><strong>F-&gt;FF </strong></p><p><strong>B</strong><br><strong>F[-B]+B </strong></p><p><strong>FF[-F[-B]+B]+F[-B]+B </strong></p><p>L-Systems and Fractal Growth </p><p>Turtle graphics </p><p>Seymour Papert </p><p></p><ul style="display: flex;"><li style="flex:1">L-Systems and Fractal Growth </li><li style="flex:1">L-Systems and Fractal Growth </li></ul><p>L-Systems and Fractal Growth Affine Transformation Fractals </p><p>"It has a miniature version of itself embedded inside it, but the smaller version is slightly rotated." </p><p>Transofrmations: translation, scale, reflection rotation </p><p>Affine Transformation Fractals </p><p>Michael Barnsley </p><p>Multiple Reduction Copy Machine Algorithm (MRCM) </p><p>Affine Transformation Fractals </p><p>Multiple Reduction Copy Machine Algorithm (MRCM) </p><p>Affine Transformation Fractals </p><p>Iterated Functional Systems (IFS) </p><p>Affine Transformation Fractals </p><p>Iterated Functional Systems (IFS) </p><p>Affine Transformation Fractals </p><p>Iterated Functional Systems (IFS) </p><p>Affine Transformation Fractals </p><p>Iterated Functional Systems (IFS) </p><p>The Mandelbrot &amp; Julia sets </p><p>Iterative Dynamical Systems </p><p>The Mandelbrot &amp; Julia sets </p><p>For each number, c, in a subset of the complex plane </p><p>Set x<sub style="top: 0.58em;">0 </sub>= 0 For t = 1 to tmax <br>Compute x<sub style="top: 0.58em;">t </sub>= x<sup style="top: -0.58em;">2 </sup>+ c </p><p>t</p><p>If t&lt; tmax, then colour point c white If t&nbsp;= tmax, then colour point c black </p><p></p><ul style="display: flex;"><li style="flex:1">The Mandelbrot &amp; Julia sets </li><li style="flex:1">The Mandelbrot &amp; Julia sets </li></ul><p></p><p>M-Set and computability </p><p>cardoid: x = 1/4(2 cos <em>t </em>- cos 2<em>t </em>) </p><p><em>y = 1/4(2 sint t </em>- sin 2 <em>t </em>) </p><p>The Mandelbrot &amp; Julia sets </p><p>The M-Set as the Master Julia set. </p><p>Set <em>c </em>to some constant complex value </p><p><em>For each number, x</em><sub style="top: 0.58em;"><em>0 </em></sub><em>in a subset of the complex plane </em><br><em>For t = 1 to tmax </em><br><em>Compute x</em><sub style="top: 0.58em;">t </sub>= x<sub style="top: 0.58em;">t</sub><sup style="top: -0.58em;">2 </sup>+ c <em>If |x</em><sub style="top: 0.58em;"><em>t</em></sub><em>| &gt; 2 then break out of loop </em></p><p><em>If t &lt; tmax </em>then colour point c white <em>It t = tmax </em>thencolour point c black </p><p></p><ul style="display: flex;"><li style="flex:1">The Mandelbrot &amp; Julia sets </li><li style="flex:1">The Mandelbrot &amp; Julia sets </li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us