Large Scale Structure Signals of Neutrino Decay Peizhi Du University of Maryland Phenomenology 2019 University of Pittsburgh based on the work with Zackaria Chacko, Abhish Dev, Vivian Poulin, Yuhsin Tsai (to appear) Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac • Mass ordering • Total mass 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac • Mass ordering D1 • Total mass ⌫ • Lifetime …… D2 1 Motivation SM neutrinos: We have detected neutrinos 50 years ago Least known particles in the SM What we don’t know: • Origin of mass • Majorana or Dirac probe them in cosmology • Mass ordering D1 • Total mass ⌫ • Lifetime …… D2 1 Why cosmology? Best constraints on (m⌫ , ⌧⌫ ) CMB LSS Planck SDSS Huge number of neutrinos Neutrinos are non-relativistic Cosmological time/length 2 Why cosmology? Best constraints on (m⌫ , ⌧⌫ ) Near future is exciting! CMB LSS CMB LSS Planck SDSS CMB-S4 Euclid Huge number of neutrinos Passing the threshold: Neutrinos are non-relativistic σ( m⌫ ) . 0.02 eV < 0.06 eV “Guaranteed”X evidence for ( m , ⌧ ) Cosmological time/length ⌫ ⌫ or new physics 2 Massive neutrinos in structure formation δ ⇢ /⇢ cdm ⌘ cdm cdm 1 ∆t H− ⇠ Dark matter/baryon 3 Massive neutrinos in structure formation δ ⇢ /⇢ cdm ⌘ cdm cdm 1 ∆t H− ⇠ Dark matter/baryon 1 ∆t ∆t H− ⇠ δcdm Neutrinos ⌦⌫ Neutrinos don’t clump efficiently Lesgourgues, Pastor 2006 Increase H, shorten the time for CDM growth,suppress δcdm 3 Decaying neutrinos in structure formation 1 ∆t H− ⇠ Dark matter/baryon Neutrinos 4 Decaying neutrinos in structure formation 1 ∆t H− ⇠ Dark matter/baryon Assuming daughter are massless Neutrinos Daughter radiation ⌦⌫ a anr adec Serpico 2007 4 Serpico 2009 Decaying neutrinos in structure formation Numerical simulation: modified CLASS code 0 Mν =0.25 eV fix H0 k=0.1 h/Mpc [%] -1 1 )- 0 = ν -2 CDM,m δ / Γ⌫ =0 ν -3 3 Γ⌫ = 10 km/s/Mpc CDM,m 4 δ ( Γ⌫ = 10 km/s/Mpc -4 anr adec adec 10-3 10-2 10-1 1 Scale Factor a degenerate neutrino masses and massless daughters Chacko, Dev, PD, Poulin, Tsai (to appear) 5 Degeneracy in mass and lifetime 0 k=0.1 h/Mpc fix H0 [%] -1 1 )- 0 = ν -2 (M⌫ , Γ⌫ ) CDM,m δ / (0.25, 0) ν -3 (0.30, 102.9) CDM,m δ 3.8 ( -4 (0.40, 10 ) 10-3 10-2 10-1 1 Scale Factor a Can we measure M ⌫ , Γ ⌫ independently ? 6 Degeneracy in mass and lifetime 0 k=0.1 h/Mpc fix H0 [%] -1 1 )- 0 = ν -2 (M⌫ , Γ⌫ ) CDM,m δ / (0.25, 0) ν -3 (0.30, 102.9) CDM,m δ 3.8 ( -4 (0.40, 10 ) 10-3 10-2 10-1 1 Scale Factor a Can we measure M ⌫ , Γ ⌫ independently ? Resolution: Need measurements at earlier time/ higher redshift z Need precision . 1% 6 Breaking the degeneracy Preliminary 3.4 Euclid 2021 ⌫ Γ 3.07 10 2.74 can probe 0.5 . z . 2 Log 2.42 0.208 0.235 0.262 0.289 2.42 2.74 3.07 3.4 from 2D map to 3D map m⌫ Log10Γ⌫ P with ~ 0.1 - 1% precision For mock data M⌫ =0.25 eV 3 Γ⌫ = 10 km/s/Mpc 7 2D parameter space Existing constraints: Non-radiative decay lifetime: CMB neutrino free-streaming Archidiacono, Hannestad 2014 Total mass: M⌫ m⌫ < 0.23 eV Planck+SDSS ⌘ X Assuming neutrinos are stable 1010 CMB neutrino free 109 -streaming 108 107 ] 106 5 Mpc / 10 s / 104 km [ ν 3 Γ 10 102 10 Log Scale 1 Planck+SDSS Linear Scale 0 0.06 0.1 0.2 0.3 0.5 0.7 0.9 Mν [eV] 8 2D parameter space The best exclusion for non-radiative decay neutrino lifetime! CMB-S4+Euclid can measure M ⌫ , Γ ⌫ independently 1010 CMB neutrino free 109 Preliminary -streaming 108 107 ] 106 5 Mpc / 10 s / Γ = H(anr) 104 ν km [ ν 3 Γ 10 102 CMB-S4+Euclid Planck+SDSS (this work) 10 Log Scale 1 Planck+SDSS Linear Scale 0 0.06 0.1 0.2 0.3 0.5 0.7 0.9 Mν [eV] 8 2D parameter space The best exclusion for non-radiative decay neutrino lifetime! CMB-S4+Euclid can measure M ⌫ , Γ ⌫ independently Interplay with terrestrial neutrino mass measurements: e.g KATRIN 1010 CMB neutrino free 109 Preliminary -streaming 108 7 10 KATRINKATRAN ] 6 ] 106 5 Mpc 5 Mpc / / 10 s s / / a ) Γν = H(anr 104 ν km km [ [ ν ν 3 Γ 3 Γ 10 102 CMB-S4+Euclid Planck+SDSS (this work) 10 Log Scale 1 Planck+SDSS Linear Scale 0 0.06 0.1 0.2 0.3 0.5 0.7 0.9 Mν [eV] 8 Conclusions • The non-radiative decay lifetime of neutrino is poorly constrained. • Current CMB and LSS data place the best constraint on both neutrino mass and lifetime • Near future experiments could break the degeneracy and measure the mass and lifetime separately. DESI (2019) Euclid (2021) LSST (2023) CMB-S4 (202?) Near future precision cosmology can tell us a lot about neutrino physics and much more! 9 Thank you! Decaying neutrinos in structure formation m⌫ a ¨ 2 ˙ 6 ⌦⌫ (⌘) δcdm(a) 3 da ⌦⌫ (a) δcdm + δcdm 2 1 δcdm m =0 exp ⌘ ⇡ ⌘ − ⌦tot δ ⌫ (a) / −5 a ⌦tot ✓ ◆ ) cdm Zai q 1 1 2 1(a<adec) y ⌦⌫ (a) dyy (✏m⌫ (y) ✏m⌫ =0(y)) f⌫ (y) adec ⌘ T⌫ / a − (a adec) 0 ⇢ a ≥ 1 Z f (y)= ⌫ ey +1 Difference in energy Effect of decay m 2 ✏ (y)= y2 + ⌫ a2 m⌫ T s ✓ ⌫ ◆ 0 0 Mν =0.25 eV fix H0 Mν =0.25 eV fix H0 [%] k=0.1 h/Mpc [%] 2 -1 - 1 1 )- 0 )- = 0 ν = -2 Numerical ν -4 Numerical m CDM,m Analytic cb, Analytic δ / P ν / -3 ν 6 Γ⌫ =0 m - Γ⌫ =0 CDM,m 3 cb, 3 δ P ( Γ⌫ = 10 km/s/Mpc Γ⌫ = 10 km/s/Mpc -4 4 ( 4 Γ⌫ = 10 km/s/Mpc -8 Γ⌫ = 10 km/s/Mpc 10-3 10-2 10-1 1 10-5 10-4 10-3 10-2 10-1 1 Scale Factor a k [h/Mpc] 10.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages21 Page
-
File Size-