Axions and Axion-Like Particles

Axions and Axion-Like Particles

Axions and Axion-like Particles Belén Gavela! Univ. Autónoma de Madrid and IFT MORIOND Electroweak 2017 H2020 We will consider the SM plus a generic scalar field a ! ! with derivative couplings to SM particles! ! and free scale fa:! ! an ALP (axion-like particle) general effective couplings This is shift symmetry invariant: ~ Goldstone! boson Brivio, Gavela, Merlo, Mimasu, No, del Rey, Sanz 2017 arXiv:1701.05379 We will consider the SM plus a generic scalar field a ! ! with derivative couplings to SM particles! ! and free scale fa:! ! an ALP (axion-like particle) general effective couplings Why? Brivio, Gavela, Merlo, Mimasu, No, del Rey, Sanz 2017 arXiv:1701.05379 Is the Higgs the only (fundamental?) scalar in nature?! ! ! ! ! Or simply the first one discovered? The spin 0 window Window on spin 0 The SM Higgs is a ~ doublet of SU(2)L The spin 0 window Window on spin 0 The SM Higgs is a ~ doublet of SU(2)L What about a singlet (pseudo) scalar? Strong motivation from fundamental problems of the SM S Φ a Rocio del Rey Strong motivation for singlet (pseudo)scalars from fundamental ! SM problems The nature of DM is unknown It may be a (SM singlet) scalar S! the “Higgs portal” = + S2 δL Φ Φ Silveira+Zee; Veltman+Yndurain; Patt+Wilczek… Strong motivation for singlet (pseudo)scalars from fundamental ! SM problems The nature of DM is unknown The strong CP problem Why is the QCD " parameter! so small? ~μν LQCD⊃θ GμνG It may be a (SM singlet) scalar S! the “Higgs portal” " dynamical U(1)A solution + 2 the axion a δL = Φ ΦS It is a pGB: ~only derivative couplings #$ a Silveira+Zee; Veltman+Yndurain; Patt+Wilczek… Also excellent DM candidate Peccei+Quinn; Wilczek… Strong motivation for singlet (pseudo)scalars from fundamental ! SM problems The nature of DM is unknown The strong CP problem Why is the QCD " parameter! so small? ~ a_ μν LQCD⊃ GμνG fa It may be a (SM singlet) scalar S! the “Higgs portal” " dynamical U(1)A solution + 2 the axion a δL = Φ ΦS It is a pGB: ~only derivative couplings #$ a Silveira+Zee; Veltman+Yndurain; Patt+Wilczek… Also excellent DM candidate Peccei+Quinn; Wilczek… In “true QCD axion” models: ma fa = cte. 1/fa ma ma vs scale fa ga ~1/fa In QCD-like theory because of explicit U(1)A breaking at quantum level (instantons, #) QCD Choi et al. 1986 ma vs scale fa ga ~1/fa In QCD-like theory because of explicit U(1)A breaking at quantum level (instantons, #) QCD Choi et al. 1986 * * Models assuming ! * -5 -2 9 12 SM gauge group: 10 < ma < 10 eV , 10 < fa <10 GeV ma vs scale fa ga ~1/fa In QCD-like theory because of explicit U(1)A breaking at quantum level (instantons, #) QCD Choi et al. 1986 * * Models assuming ! * -5 -2 9 12 SM gauge group: 10 < ma < 10 eV , 10 < fa <10 GeV γ Intensely looked for experimentally… ga$ (GeV-1)! γ (GeV-1) “True” QCD axion ! band = “Invisible axion”! e.g. KSVZ, DFSZ… ! v<< fa —> EW hierarchy problem “True” QCD region ma (eV) … and theoretically https://arxiv.org/pdf/1611.04652.pdf γ ga$ (GeV-1)! γ (GeV-1) Refined KSVZ axion ! band: ! up and thinner! from %DM ! + Landau-poles analysis (Luzio+Mescia+Nardi 2017) ! v<< fa —> EW hierarchy problem “True” QCD region ma (eV) … and theoretically https://arxiv.org/pdf/1611.04652.pdf γ ga$ (GeV-1)! γ (GeV-1) QCD axiflavon ! band ! (creative view) (Calibbi et al. 2016) ! v<< fa —> EW hierarchy problem “True” QCD region ma (eV) … and theoretically https://arxiv.org/pdf/1611.04652.pdf γ ga$ (GeV-1)! γ (GeV-1) QCD axiflavon ! band ! (creative view) (Calibbi et al. 2016) Excluded for axiflavon ! by rare meson decays ! v<< fa —> EW hierarchy problem “True” QCD region ma (eV) … and theoretically https://arxiv.org/pdf/1611.04652.pdf ma vs scale fa ga ~1/fa In QCD-like theory because of explicit U(1)A breaking at quantum level (instantons, #) QCD Choi et al. 1986 * * Models assuming ! * -5 -2 9 12 SM gauge group: 10 < ma < 10 eV , 10 < fa <10 GeV ma vs scale fa ga ~1/fa In QCD-like theory because of explicit U(1)A breaking at quantum level (instantons, #) QCD Choi et al. 1986 * * Models assuming ! * -5 -2 9 12 SM gauge group: 10 < ma < 10 eV , 10 < fa <10 GeV * Models enlarging the strong SM gauge sector, with scale #’ ? ma vs scale fa ga ~1/fa In QCD-like theory because of explicit U(1)A breaking at quantum level (instantons, #) QCD Choi et al. 1986 -5 -2 9 12 10 < ma < 10 eV , 10 < fa <10 GeV * Models enlarging the strong SM gauge sector, with scale #’ ? , ma vs scale fa ga ~1/fa In QCD-like theory because of explicit U(1)A breaking at quantum level (instantons, #) QCD Choi et al. 1986 -5 -2 9 12 10 < ma < 10 eV , 10 < fa <10 GeV * Models enlarging the strong SM gauge sector, with scale #’ ? , ma vs scale fa ga ~1/fa In QCD-like theory because of explicit U(1)A breaking at quantum level (instantons, #) QCD Choi et al. 1986 -6 -3 9 12 10? < ma < 10 eV , 10 < fa <10? GeV * Models enlarging the strong SM gauge sector, with scale #’ ? , relax the parameter space Recent activity on heavy “true” axions * Enlarging the strong SM gauge group, with scale #’: Dimopoulos+Susskind 79, Tye 81…Rubakov 97… Berezhiani+Gianfagna+Gianotti 01… surge since 2016!: : Gherghetta+Nagata+Shifman , Chiang et al., Khobadize… Hook and many collaborators, Dimopoulos et al. … e.g. SU(3)c x SU(N’) both confining #QCD #’ a Recent activity on heavy “true” axions * Enlarging the strong SM gauge group, with scale #’: Dimopoulos+Susskind 79, Tye 81…Rubakov 97… Berezhiani+Gianfagna+Gianotti 01… surge since 2016!: : Gherghetta+Nagata+Shifman , Chiang et al., Khobadize… Hook and many collaborators, Dimopoulos et al. … e.g. SU(3)c x SU(N’) both confining #QCD #’ * The ugly part: " and "’ Recent activity on heavy “true” axions * Enlarging the strong SM gauge group, with scale #’: Dimopoulos+Susskind 79, Tye 81…Rubakov 97… Berezhiani+Gianfagna+Gianotti 01… surge since 2016!: : Gherghetta+Nagata+Shifman , Chiang et al., Khobadize… Hook and many collaborators, Dimopoulos et al. … e.g. SU(3)c x SU(N’) both confining #QCD #’ * The ugly part: " and "’ —>To reabsorb both : unification, and/or SM mirror world related by Z2, ! or other constructions … all require tunings Nothing works very nicely, but there is movement —> e.g. fa ~ TeV, ma ~ MeV - TeV still solve the strong CP problem * Much territory to explore for heavy ‘true” axions and for ALPs e.g. ~ TeV CAST +! SUMICO Jaeckel+ Spannowsky 2015 Log 10ma (eV) “True” QCD axion * Much territory to explore for heavy ‘true” axions and for ALPs e.g. ~ TeV CAST +! SUMICO Jaeckel+ Spannowsky 2015 Log10ma (eV) “True” axion region ! amplifies?? * Much territory to explore for heavy ‘true” axions and for ALPs ~ TeV CAST +! SUMICO Jaeckel+ Spannowsky 2015 Log10ma (eV) “True” axion region ! amplifies?? (Pseudo)Goldstone Bosons also in many BSM theories * e.g. Extra-dim Kaluza-Klein: 5d gauge field compactified to 4d the Wilson line around the circle is a GB, which behaves as an axion in 4d * a Moriond example: the “relaxion" (G. Perez talk) is not a GB but part of its couplings are purely derivative as those of ALPs, e.g. * Much territory to explore for axions and ALPs e.g. ~ TeV ! CAST +! SUMICO Strongderivative case for couplings looking everywhere of a spin 0 forparticle purely ! Jaeckel+ Spannowsky 2015 Log10ma (eV) We will consider the SM plus a generic scalar field a ! ! with derivative couplings to SM particles! ! and free scale fa:! ! an ALP (axion-like particle) general effective couplings THEORY plus NEW SIGNALS at colliders Brivio, Gavela, Merlo, Mimasu, No, del Rey, Sanz 2017 arXiv:1701.05379 Up to date, phenomenological studies have mostly focused on ! ALP couplings to fermions and photons But because of SU(2)xU(1) gauge invariance, ! a-$$ should come together with a-$&, a-Z& and a-W+W- : + …. ALP-Linear= effective Lagrangian at NLO SM EFT If only bosonic ALP-operators are considered: , Georgi, Kaplan, Randall 1986 ALP-Linear= effective Lagrangian at NLO SM EFT If only bosonic ALP-operators are considered: , SM higgs doublet Georgi, Kaplan, Randall 1986 ALP-Linear= effective Lagrangian at NLO SM EFT If only bosonic ALP-operators are considered: , Georgi, Kaplan, Randall 1986 ALP-Linear= effective Lagrangian at NLO SM EFT If only bosonic ALP-operators are considered: , Georgi, Kaplan, Randall 1986 ALP-Linear= effective Lagrangian at NLO SM EFT If only bosonic ALP-operators are considered: a a Only fermionic a-Higgs couplings Georgi, Kaplan, Randall 1986 ALP-Linear= effective Lagrangian at NLO SM EFT If only bosonic ALP-operators are considered: Note: NO a-Higgs purely bosonic couplings Georgi, Kaplan, Randall 1986 ALP-Linear= effective Lagrangian at NLO SM EFT Complete basis (bosons+fermions): where Xψ is a general 3x3 matrix in flavour space Note: NO a-Higgs bosonic couplings Georgi + Kaplan + Randall 1986 Choi + Kang + Kim, 1986 Salvio + Strumia + Shue, 2013 ALP-Linear effective Lagrangian at NLO Complete basis (bosons+fermions): ! analysiswhere parameters: Xψ is a general 3x3 !matrix in flavour space Note: NO a-Higgs bosonic couplings Georgi + Kaplan + Randall 1986 Choi + Kang + Kim, 1986 Salvio + Strumia + Shue, 2013 ALP-Linear effective Lagrangian at NLO Complete basis (bosons+fermions): where Xψ is a general 3x3 matrix in flavour space contain a-$$ and other couplings Georgi + Kaplan + Randall 1986 Choi + Kang + Kim, 1986 Salvio + Strumia + Shue, 2013 Because of SU(2)xU(1) gauge invariance, ! a-$$ comes together with a-$&, a-Z& and a-W+W- : a-$$ studies only bounds this combination of couplings 90% CL: Because of SU(2)xU(1) gauge invariance, ! a-$$ comes together with a-$&, a-Z& and a-W+W- : Largely disregarded up to very very recently only a tiny bit in Jaeckel+Spannowsky

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    88 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us