Uva-DARE (Digital Academic Repository)

Uva-DARE (Digital Academic Repository)

UvA-DARE (Digital Academic Repository) Optimality properties of curves over finite fields Zaitsev, A.I. Publication date 2008 Link to publication Citation for published version (APA): Zaitsev, A. I. (2008). Optimality properties of curves over finite fields. Thomas Stieltjes Institute for Mathematics. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Bibliography [1] Aldo Andreotti. On a theorem of Torelli. Amer.J.Math., 80:801–828, 1958. [2] Juscelino Bezerra, Arnaldo Garcia, and Henning Stichtenoth. An explicit tower of function fields over cubic finite fields and Zink’s lower bound. J. Reine Angew. Math., 589:159–199, 2005. [3] Pierre Deligne. Vari´et´es ab´eliennes ordinaires sur un corps fini. Invent. Math., 8:238–243, 1969. [4] Max Deuring. Die Typen der Multiplikatorenringe elliptischer Funktio- nenk¨orper. Abh. Math. Sem. Hansischen Univ., 14:197–272, 1941. [5] Noam D. Elkies. Explicit towers of Drinfeld modular curves. In European Congress of Mathematics, Vol. II (Barcelona, 2000), volume 202 of Progr. Math., pages 189–198. Birkh¨auser, Basel, 2001. [6] G. Frey, M. Perret, and H. Stichtenoth. On the different of abelian extensions of global fields. In Coding theory and algebraic geometry (Luminy, 1991), volume 1518 of Lecture Notes in Math., pages 26–32. Springer, Berlin, 1992. [7] Rainer Fuhrmann, Arnaldo Garcia, and Fernando Torres. On maximal curves. J. Number Theory, 67(1):29–51, 1997. [8] Rainer Fuhrmann and Fernando Torres. The genus of curves over finite fields with many rational points. Manuscripta Math., 89(1):103–106, 1996. [9] Arnaldo Garc´ıa and Henning Stichtenoth. A tower of Artin-Schreier exten- sions of function fields attaining the Drinfeld-Vl˘adut¸ bound. Invent. Math., 121(1):211–222, 1995. [10] Arnaldo Garcia and Henning Stichtenoth. Asymptotically good towers of func- tion fields over finite fields. C. R. Acad. Sci. Paris S´er. I Math., 322(11):1067– 1070, 1996. [11] Arnaldo Garcia and Henning Stichtenoth. On the asymptotic behaviour of some towers of function fields over finite fields. J. Number Theory, 61(2):248– 273, 1996. 61 [12] V. D. Goppa. Codes that are associated with divisors. Problemy Peredaˇci Informacii, 13(1):33–39, 1977. [13] V. D. Goppa. Codes on algebraic curves. Dokl. Akad. Nauk SSSR, 259(6):1289– 1290, 1981. [14] E. W. Howe and K. E. Lauter. Improved upper bounds for the number of points on curves over finite fields. Ann. Inst. Fourier (Grenoble), 53(6):1677– 1737, 2003. [15] Everett W. Howe. Principally polarized ordinary abelian varieties over finite fields. Trans. Amer. Math. Soc., 347(7):2361–2401, 1995. [16] Everett W. Howe, Kristin E. Lauter, and Jaap Top. Pointless curves of genus 3 and 4. Arithmetic, geometry and coding theory. Yves Aubry - Gilles Lachaud (Eds.) S´eminaires et Congr`es, Soc. Math. France, 11(xviii+216):125– 141, 2005. [17] A. Hurwitz. Ueber algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann., 41(3):403–442, 1892. [18] Tomoyoshi Ibukiyama. On rational points of curves of genus 3 over finite fields. Tohoku Math. J. (2), 45(3):311–329, 1993. [19] Yasutaka Ihara. Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3):721–724 (1982), 1981. [20] Kenkiti Iwasawa and Tsuneo Tamagawa. Correction. On the group of auto- morphisms of a function field. J. Math. Soc. Japan, 4:100–101, 1952. [21] E. Kani and M. Rosen. Idempotent relations and factors of Jacobians. Math. Ann., 284(2):307–327, 1989. [22] G. Korchmaros and M. Giulietti. A new family of maximal curves over a finite field, 2007. http://arxiv.org/abs/0711.0445. [23] Kristin Lauter. Geometric methods for improving the upper bounds on the number of rational points on algebraic curves over finite fields. J. Algebraic Geom., 10(1):19–36, 2001. With an appendix in French by J.-P. Serre. [24] Kristin Lauter. The maximum or minimum number of rational points on genus three curves over finite fields. Compositio Math., 134(1):87–111, 2002. With an appendix by Jean-Pierre Serre. [25] Yu. I. Manin. What is the maximum number of points on a curve over F2? J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3):715–720 (1982), 1981. 62 [26] J. S. Milne. Jacobian varieties. In Arithmetic geometry (Storrs, Conn., 1984), pages 167–212. Springer, New York, 1986. [27] Harald Niederreiter and Chaoping Xing. Rational points on curves over finite fields: theory and applications, volume 285 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2001. [28] Frans Oort and Kenji Ueno. Principally polarized abelian varieties of dimen- sion two or three are Jacobian varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 20:377–381, 1973. [29] Peter Roquette. Absch¨atzung der Automorphismenanzahl von Funktio- nenk¨orpern bei Primzahlcharakteristik. Math. Z., 117:157–163, 1970. [30] Alexander Schiemann. Classification of Hermitian forms with the neighbour method. J. Symbolic Comput., 26(4):487–508, 1998. [31] Hermann Ludwig Schmid. Uber¨ die Automorphismen eines algebraischen Funktionenk¨orpers von Primzahlcharakteristik. J. reine angew. Math., 179:5– 15, 1938. [32] Rainer Schulze-Pillot. Letter to Alexey Zaytsev. 2006. [33] Jean-Pierre Serre. Nombres de points des courbes alg´ebriques sur Fq.In Seminar on number theory, 1982–1983 (Talence, 1982/1983),volumeExp. No. 22, 8. Univ. Bordeaux I, Talence, 1983. [34] Jean-Pierre Serre. Rational points on curves over finite fields. Notes of lectures at Harvard University. 1985. [35] Jean-Pierre Serre. Œuvres. Vol. III. Springer-Verlag, Berlin, 1986. 1972–1984. [36] V. Shabat. Curves with Many Points. Amsterdam, 2001. Ph. D. thesis. [37] Carl Ludwig Siegel. The trace of totally positive and real algebraic integers. Ann. of Math. (2), 46:302–312, 1945. [38] Balwant Singh. On the group of automorphisms of function field of genus at least two. J. Pure Appl. Algebra, 4:205–229, 1974. [39] Christopher Smyth. Totally positive algebraic integers of small trace. Ann. Inst. Fourier (Grenoble), 34(3):1–28, 1984. [40] Henning Stichtenoth. Algebraic function fields and codes.Universitext. Springer-Verlag, Berlin, 1993. [41] Henning Stichtenoth. Transitive and self-dual codes attaining the Tsfasman- Vl˘adut¸-Zink bound. IEEE Trans. Inform. Theory, 52(5):2218–2224, 2006. 63 [42] John Tate. Endomorphisms of abelian varieties over finite fields. Invent. Math., 2:134–144, 1966. [43] Jaap Top. Curves of genus 3 over small finite fields. Indag. Math. (N.S.), 14(2):275–283, 2003. [44] M. A. Tsfasman and S. G. Vl˘adut¸. Algebraic-geometric codes,volume58of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian by the authors. [45]M.A.Tsfasman,S.G.Vl˘adut¸, and Th. Zink. Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound. Math. Nachr., 109:21–28, 1982. [46] Gerard van der Geer and Marcel van der Vlugt. Supersingular curves of genus 2 over finite fields of characteristic 2. Math. Nachr., 159:73–81, 1992. [47] Gerard van der Geer and Marcel van der Vlugt. Tables of curves with many points, 2000. Updated versions available at http://www.science.uva.nl/geer/. [48] Gerard van der Geer and Marcel van der Vlugt. An asymptotically good tower of curves over the field with eight elements. Bull. London Math. Soc., 34(3):291–300, 2002. [49] Jacobus Hendricus van Lint. Introduction to Coding Theory,volume86of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982. Problemy Matematicheskogo Analiza [Problems in Mathematical Analysis], 8. [50] S. G. Vl˘adut¸andV.G.Drinfeld. The number of points of an algebraic curve. Funktsional. Anal. i Prilozhen., 17(1):68–69, 1983. [51] William C. Waterhouse. Abelian varieties over finite fields. Ann. Sci. Ecole´ Norm. Sup. (4), 2:521–560, 1969. [52] A. Zaytsev. The Galois closure of the Garcia-Stichtenoth tower. J. Finite Fields and Their Applications, 13(4):751–761, 2007. [53] A. Zaytsev. Optimal curves of low genus over finite fields, 2007. http://arxiv.org/abs/0706.4203. 64.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    5 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us