Algorithmic Cooling in Liquid State NMR (Pdf)

Algorithmic Cooling in Liquid State NMR (Pdf)

Algorithmic Cooling in Liquid-state NMR Yuval Elias / Gilles Brassard Group NTRQ Meeting November 2015 Château Bromont Algorithmic Cooling in Liquid-state NMR Yuval Elias / Gilles Brassard Group NTRQ Meeting November 2015 Château Bromont Bonne-Fête Anniversaire Gilles! 15 15 15 15 http://menoummm.centerblog.net/6123670-Bonne-Fete-Anniversaire- https://s3.amazonaws.com/uploads.startups.fm/wp-content/uploads/ 2013/08/erwin-schrodinger.jpg Overview Novel Spin Cooling from Quantum Computing Spin cooling: enhancing polarization in NMR Polarization compression: generalized polarization transfer Open systems: heat-bath cooling, algorithmic cooling Heat-bath Cooling Experiments Model system: 13C-labeled trichloroethylene (TCE) 13C-labeled glutamate and glycine (Glu, Gly) Algorithmic Cooling Experiments AC in solid-state NMR AC in liquid-state NMR - building blocks AC in liquid-state NMR – process 1 (cooling C1) AC in liquid-state NMR – processes 2,3 (cooling C2, C3) Future prospects – Carbon-based Brain Spectroscopy Outline The advent of NMR quantum computing in the late 1990s led to renewed interest in entropy manipulations for spin cooling. Spin Cooling – Enhancing Polarization in NMR Polarization bias : excess polarization of spins aligned with field 1 2 0 EEEE T 0 hB 0 1 tanh2kT 2 kT 2 kT 0 2 Effective spin temperature: for any bias (also non-thermal) 11.7T (500 MHz), 25°C ~ 10-5 Spin-cooling: transient increase in polarization, beyond thermal Abragam and Goldman, Nuclear Magnetism: Order and Disorder (1982) Polarization Compression Shannon’s bound on total entropy Shannon, Bell Syst. Tech. J. (1948) H( X ) p log 1 i 2 pi Coin flip: H(fair) = 1; H(¼,¾) = 0.811; H(heads) = 0 Fair biased coin: flip twice, use first toss if different J. von Neumann, Appl. Math. Ser. (1951). NMR: rf pulses for optimal polarization transfer Sørensen, Prog. Nucl. Mag. Res. Spec. (1989) “Molecular scale heat engine”: loss-less data compression Schulman & Vazirani, Proc. 31st ACM Symp. Theory Comput. (1999) Polarization Compression – Shannon’s Bound Shannon’s bound on single spin entropy: 11 1 2 H(1) p logpp p log 1 ln4 Shannon’s bound for n spin-system: 2 2 H() n nH (1) n 1 11max (1)1 n n ln 4 ln 4 max Over a billion spins required to produce one pure spin! abc P(abc) 3 3-Bit Polarization Compression 000 pp3 001 p2 a 010 p2 p 3B-Comp 011 1 a = 1.50 100 p2 101 p1 b c = = 0.5 110 p1 a =b=c= 0 b c 0 3 111 pp0 132 3 321 0 0 P a03 p p p 22 a abc 3-bit compression with non-uniform bias: a 2 Elias, Fernandez, Mor & Weinstein, Isr. J. Chem. (2006) Spin Cooling in Open Systems selective-reset(cr): PT to selected computation spin c followed by reset of reset spin r 1 Environment Reset spin ( H), eq 40 PT PT WAIT 13 Computation spins ( C), eq = 0 Assumption: computation spins relax infinitely faster than reset spins Heat-bath Cooling of Spins Heat-bath cooling: one or more selective-reset steps cool spin-system entirely or partially Reset spin (1H), 4 H eq 0 SR(HC1) SR(HC2) C2 C1 13 Computation spins ( C), eq = 0 Improved cooling of both 13C by avoiding final reset Fernandez, Lloyd, Mor & Roychowdhury, Int. J. Quant. Inf. (2004) Algorithmic Cooling of Spins Heat-bath algorithmic cooling: bypass entropy bound combine polarization compression and heat-bath cooling! Reset spin (1H), 4 H eq 0 HBC Comp Scalable NMRQC C2 C1 13 Computation spins ( C), eq = 0 = 60 beyond H(3)! PAC – practicable algorithmic cooling Boykin, Mor, Roychowdhury, Vatan & Vrijen, PNAS (2002) Fernandez, Lloyd, Mor & Roychowdhury, Int. J. Quant. Inf. (2004) Mor, Roychowdhury, Fernandez, Lloyd & Weinstein, US Patent #6,873,154 (2005) Algorithmic Cooling – Second Cooling Level Reset spin (1H), 4 H eq 0 H 3B-Comp C4 C3 C2 C1 13 Computation spins ( C), 1 = 60 2 = 90 (160) PAC with n spins (3/2)n [2n] Fernandez, Lloyd, Mor & Roychowdhury, Int. J. Quant. Inf. (2004) Spin-cooling Algorithms For n spins, one reset spin and 2Q = n-1 computation spins, ideally: leftmost - reset spin; rightmost - coldest PAC algorithm : {1 1 3/2 3/2 9/4 9/4 27/8 ... (3/2)Q} 53 resets Optimal algorithm (PPA): {1 1 2 4 8 16 32 ... 2n-2} “Fibonacci” algorithm: {1 1 2 3 5 8 13 ... Fn} “Tribonacci” algorithm: {1 1 2 4 7 13 24 ... Tn} Semi-optimal 4PAC: {1 1 1.94 1.94 3.75 3.75 7.27 } 911 resets Semi -optimal 4Fib: {1 1 1.88 2.70 4.28 6.54 10.2 } Fernandez, Lloyd, Mor & Roychowdhury, Int. J. Quant. Inf. (2004) Schulman, Mor & Weinstein, Phys. Rev. Lett. (2005) Elias, Fernandez, Mor & Weinstein, Isr. J. Chem. (2006) Elias, Mor & Weinstein, Phys. Rev. A, (2011) Relaxation-Time Ratios Reset spins should repolarize much faster than computation spins relax Preserve enhanced polarization during reset (c,r) = T1 (c) / T1 (r) >> d * Nr (#reset-steps) Preferably - (c,r) > 10*Nr (typically d ~ 1-5) Elias, Mor & Weinstein, Phys. Rev. A, (2011) Brassard, Elias, Mor & Weinstein, EPJ+ (2014) Heat-bath Cooling Model System 3.5s Cl H 13C2-TCE C1 C2 20s C1 904 T1(C1) ~ 40s 13C 13C C2 103 0 C1 C2 H 9 201 Cl Cl Non-selective (“hard”) pulses chloroform-d / acetone–d6 Paramagnetic reagent Cr(acac)3 (13C,1H) 10 T2 >> 1/J < 1 kHz hard pulses Fernandez, Mor & Weinsten, Int. J. Quant. Inf. (2005) Brassard, Elias, Fernandez, Gilboa, Jones, Mor, Weinstein & Xiao, arXiv:quant-ph/0511156 (2005) Heat-bath Cooling – POTENT pulse sequence 1) 1st Selective Reset(C1H) 2) 2nd Selective Reset(C2H) POTENT pulse sequence: Cl H POlarization Transfer via ENvironment Thermalization 13 13 C C 1 2 1H Cl Cl * 13C H C2 H C2 13C C2 C1 d2 d3 T1(H) < d2,d3 < T1(C2) < T1(C1) Brassard, Elias, Fernandez, Gilboa, Jones, Mor, Weinstein & Xiao, arXiv:quant-ph/0511156 (2005), EPJP (2014) Annotated POTENT pulse sequence Brassard, Elias, Fernandez, Gilboa, Jones, Mor, Weinstein & Xiao, EPJP (2014) Heat-bath Cooling of TCE – Entropy Reduction C2 C1 1H Cl H 13C 13C After POTENT: C1 C2 1H Cl Cl Equilibrium: Brassard, Elias, Fernandez, Gilboa, Jones, Mor, Weinstein & Xiao, EPJP (2014) Heat-bath Cooling – Amino Acids (Gly, Glu) 1) Selective Reset(C1H) 13C -Glu/Gly Gd-DTPA (Magnevist) 2) PT(C2H) 2 D2O, K3PO4, pH~8 Truncated POTENT Glutamate (Glu) – major excitatory 2.7s (1.3s) neurotransmitter, Alzheimer’s disease O H 4s (2s) 30s (13s) 13 13 + C CNH3 2 1 - O R = H, CH2CH2COOD Glycine - inhibitory neurotransmitter (low conc.) T1(H) ~ T1(C2) < d2 << T1(C1) T2 >> 1/J Short spin-selective pulses (1 ms BURP) Elias, Gilboa, Mor & Weinstein, Chem. Phys. Lett. (2011) Cooling Amino Acids Beyond the Entropy Bound O H Glycine 297K Glutamatic acid 13 13 + C C NH3 1 2 After cooling O - R 1H 1 rec Acq 13Caliphatic HCC Equilibrium HCC 1 rec d3 Acq 13Ccarbonyl d3 ~7T1(H) = 10s (Glu) / 20s (Gly) Both spin-systems cooled (C1 by 1.900.01) Elias, Gilboa, Mor & Weinstein, Chem. Phys. Lett. (2011) Heat-bath Cooling of Both Backbone Carbons O H 13C2-glutamate 310K +50 µM Magnevist 13 13 + C C NH3 1 2 O - R Truncated POTENT 1 3 1 rec 1 1 3 Acq HCC d2 d5 d3 HCC E-BURP1 E-BURP1 E-BURP1 1 rec 3 Acq d14 2 d14 d5 I-BURP1 I-BURP1 d2 = 2-3T1(H), d3 ~ T2(H) = 0.5s-1s Both carbons cooled about 2.5-fold (to ~120K) Elias, Gilboa, Mor & Weinstein, Chem. Phys. Lett. (2011) Algorithmic Cooling in Solid State NMR H H 13C3-malonic acid Hm2 Hm1 13C Spin diffusion – fast repolarization Cm (msec), T1(13C) > 100 s HOO13C 13COOH C1 C2 Numerically optimized pulses 1) 1st Selective Reset (C1Hm1) 2) 2nd Selective Reset (C2Hm1) 3) Selective PT(CmHm1) Single crystal, ~3% labeled 4) 3-Bit Compression (C1,Cm,C2) Heat-bath – protons in crystal C1 cooled by factor of 4.0 ± 0.1 C2 cooled beyond heat-bath (4.59, …, 5.58) Baugh, Moussa, Ryan, Nayak & Laflamme, Nature (2005) Ryan, Moussa, Baugh & Laflamme, Phys. Rev. A (2008) Algorithmic Cooling in Liquid-state NMR – Building Block 1 Numerically-optimized pulses (GRAPE) SIMPSON open source simulation package PE (polarization exchange) : C2 cooled by 3.76 ± 0.02 Glaser, Reiss, Kehlet & Schulte-Herbrüggen, J. Magn. Reson. (2005) Tosner, Vosegaard, Kehlet, Khaneja, Glaserd & Nielsen, J. Magn. Reson. (2009) Atia, Elias, Mor & Weinstein, Int. J. Quant. Inf. Algorithmic Cooling in Liquid-state NMR – Building Block 2 Numerically-optimized pulses (GRAPE) SIMPSON open source simulation package COMP : C1 cooled by 2.76 ± 0.02 Glaser, Reiss, Kehlet & Schulte-Herbrüggen, J. Magn. Reson. (2005) Tosner, Vosegaard, Kehlet, Khaneja, Glaserd & Nielsen, J. Magn. Reson. (2009) Atia, Elias, Mor & Weinstein, Int. J. Quant. Inf. AC in Liquid-state NMR – Process 1 Overview Cl H 13 13 C C 1 2 Cl Cl Atia, Elias, Mor & Weinstein, arXiv:1411.4641v2 [quant-ph], submitted to Phys. Rev. A AC in Liquid-state NMR – Process 1 Process 1: D1=150s, D2=5s, D3=3s Atia, Elias, Mor & Weinstein, arXiv:1411.4641v2 [quant-ph], submitted to Phys. Rev. A AC in Liquid-state NMR – Process 1 Buildup Atia, Elias, Mor & Weinstein, arXiv:1411.4641v2 [quant-ph], submitted to Phys. Rev. A AC in Liquid-state NMR – Process 1 (7 Rounds) C1 cooled by factor of about 4.6, ICC1 = 21.25 ± 0.18 Atia, Elias, Mor & Weinstein, arXiv:1411.4641v2 [quant-ph], submitted to Phys. Rev. A AC in Liquid-state NMR – Process 2 Process 2: D1=150s, D2=5s, D3=3s, D4=5s Atia, Elias, Mor & Weinstein, arXiv:1411.4641v2 [quant-ph], submitted to Phys.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us