Indole & Pyrrole Synthesis: Cliffsnotes (Richter, 2004)

Indole & Pyrrole Synthesis: Cliffsnotes (Richter, 2004)

9/1/04 Richter Indole and Pyrrole Synthesis: " " Group Meeting Disclaimer: Indole: This lecture will only cover methodology for the construction of the indole and pyrrole ring systems, rather than functionalionalization of pre-existing heterocycles, Nature: which would be the topic of another series of lectures. – The most abundant heterocycle in nature – Found in tryptophan, indole-3-acetic acid (plant growth hormone), Partial List of Transforms Discussed: serotonin (neurotransmitter), natural products, drugs – Isolated industrially from coal tar 1. Batcho-Leimgruber Indole Synthesis – Biosynthesis of tryptophan 2. Reissert Indole Synthesis CO H 3. Hegedus Indole Synthesis 15 2 3 serine 4. Fukuyama Indole Synthesis glucose Steps NH Steps N 5. Sugasawa Indole Synthesis 2 H 6. Bischler Indole Synthesis anthranilate 7. Gassman Indole Synthesis tryptophan 8. Fischer Indole Synthesis 9. Japp-Klingemann Indole Synthesis Reactivity: 10. Buchwald Indole Synthesis C–4 C–3 11. Bucherer Carbazole Synthesis C–5 C–2 12. Japp-Maitland Carbazole Synthesis C–6 N 13. Larock Indole Synthesis C–7 H 14. Bartoli Indole Synthesis 15. Castro Indole Synthesis – Isoelectronic with naphthalene (slightly lower stabilization energy) 16. Hemetsberger Indole Synthesis – Indole has a higher stabilization energy than benzene 17. Mori-Ban Indole Synthesis – Very weakly basic: pKa of protonated indole: –2.4 18. Graebe-Ullmann Carbazole Synthesis – Protonation occurs at C–3 preferentially 19. Madelung Indole Synthesis – Easily oxidized (atmospheric oxygen) – very electron rich 20. Nenitzescu Indole Synthesis – Less prone to oxidation of EWG's on the ring – less electron rich 21. Piloty Pyrrole Synthesis – Electrophilic attack occurs at C–3 (site of most electron density) 13 22. Barton-Zard Pyrrole Synthesis – C–3 is 10 times more reactive to electrophilic attack than benzene 23. Huisgen Pyrrole Synthesis – C–2 is the second most reactive site on the molecule, but most easily 24. Trofimov Pyrrole Synthesis functionalized by directed lithiation 25. Knorr Pyrrole Synthesis – pKa of N–H is 16.7 (20.9 DMSO) 26. Hantzsch Pyrrole Synthesis – N–1 is the most nucleophilic site on indole 27. Paal-Knorr Pyrrole Synthesis – Nucleophilic substitution at benzylic carbons enhanced 28. Zav'Yalov Pyrrole Synthesis – Regiospecific functionalization of the carbocycle is difficult without 29. Wolff Rearrangement pre-functionalization of the ring (i.e. halogenation) Sundberg, R.J. Indoles. Academic Press Ltd. San Diego: 1996 9/1/04 Richter Indole and Pyrrole Synthesis: " " Group Meeting O X + + + N X N O H H H2N O NH2 N O H NH 1a 2 N N Ring 1b N H H O H Contracton 9c 1c N X H NH2 9b 11 12 13 N 1d H 10 N 1 X H 9a NH2 N O 9 H + 2 R O + N H N N H H N 8c H 8 N 3 H Y X 8b + 7 3a 8a NH X N 6 5 4 2 H N 3b H S X + 3c N NHCl H O N 3d N N H R N H X H H + NHOH N Y + H N + H NH2 NHNH2 O R NH2 X Sundberg, R.J. Indoles. Academic Press Ltd. San Diego: 1996 9/1/04 Richter Indole and Pyrrole Synthesis: " " Group Meeting Disconnection 1a: Disconnection 1a: R OCOR Batcho-Leimgruber Indole Synthesis: O NO OMe 2 NO2 Me N OMe 1 Me N 2 Me [H] R R R NO NO N 2 NH 2 H R 6 R R O OH – Typical [H] = H , Pd/C; hydrazine, Raney Ni 3 2 NO2 NH2 NO2 – Other side products from reductive cyclization include N–O – Yields: 50's – 90's 5 4 Variants: Me CN CH NO R 3 2 NO NO2 2 NO 2 NO2 [H] – 1: Reduction, then acid R R – 2: Reduction, then acid NO N 2 H – 3: Oxidation, then reduction, then acid R HNO3 Can oxidize the alcohol and not the aniline with Ru(PPh3)2Cl2 Can convert the nitro-alcohol into indole with Pd/C or Rh/C and NO2 Ru(PPh3)2Cl2 – 4: Reduction of nitro and cyano (one or two steps), then acid – If R = carbonyl, use KF / 18-c-6 / i-PrOH for the Henry reaction – 5: Wacker oxidation, reduction, then acid – Use classic Henry conditions otherwise – 6: Ozonolysis, reduction, then acid –Typical [H] = Fe, Fe/SiO2 – Yields: 40's – 90's Reissert Indole Synthesis: Me Base CO2Et [H] CO2Me O (CO2Et)2 NO N NO2 2 H Sundberg, R.J. Indoles. Sundberg, R.J. Indoles; Reissert, A. Ber. 1897, 30, 1030 9/1/04 Richter Indole and Pyrrole Synthesis: " " Group Meeting Disconnection 1b: Disconnection 1d: Palladium Synthesis: Hegedus Indole Synthesis: II R' Pd , then [H] or Me R N NH2 PdII, Cu(OAc) , R II R'M N 2 H Pd H benzoquinone PdII R – Applied to the total synthesis of rac-aurantioclavine by Hegedus NHX N (Hegedus, L.S. J. Org. Chem. 1987, 52, 3319) H H+ H R Br I N N H N H – X can be either H, Ac, Ms, TFA N H – The intermediate organopalladium can be intercepted – Yields: 40's – 90's – Applied to the total synthesis of arcyriacyanin A by Steglich (Steglich, W. Chem. Eur. J. 1997, 3, 70) Disconnection 1c: H N Br O R O R NO N 2 H N NH Ts N R H R R Disconnection 1–Misc.: R NO N 2 H Fukuyama Indole Synthesis: – Reductive cyclization mediated by (EtO)3P or PdCl2/PPh3/SnCl2 and CO nBu3SnH – Migratory aptitudes unknown S R – Unknown mechanism – does not involve a nitrene AIBN N N R H H Sundberg, R.J. Indoles. Hegedus, L.S. J. Am. Chem. Soc. 1976, 98, 2674; ibid 1978, 100, 5800; e.g. Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 2137. 9/1/04 Richter Indole and Pyrrole Synthesis: " " Group Meeting Disconnection 2: Disconnection 3b: Pyrrone Diels-Alder: Gassman Indole Synthesis: 1. t-BuOCl SMe 2. R'' O R S R R'' Raney-Ni R R'' NH O O N N N N 3. base H H R' R' R' – Little regiocontrol observed in most reactions – Good regiocontrol observed with ortho or para substitution – pyrrole-quinodimethanes are not stable and therefore not amenable for – ortho/para methoxy substituents failed completely Diels-Alders directly Disconnection 3c: Disconnection 3a: O Sugasawa Indole Synthesis: OH N O BCl3 CN CN NaBH4 R + Ac Li2PdCl4 R ZnCl2, AlCl3 NH2 Cl NH2 NaOMe N H or TiCl4 H acid O- O N • Z N – Requires very strong Lewis Acids so many functionalities are not stable H N R H – Choice of second Lewis acid depends on substitution pattern O Bischler Indole Synthesis: OH OMe N NH 2 O R Ar + Ar N – Quite mild, if the O-vinyl derivatives can be synthesized X H o – Not very general: requires HBr (1 eq) and 200+ C – Mechanism? Sundberg, R.J. Indoles. Gassman, P.G. J. Am. Chem. Soc. 1974, 96, 5495; Sundberg, R.J. Indoles. 9/1/04 Richter Indole and Pyrrole Synthesis: " " Group Meeting Disconnection 3d: Disconnection 3d: Fischer Indole Synthesis: Bucherer Carbazole Synthesis: X R' O + NaHSO + acid 3 R' R NHNH NHNH2 R H2O 2 acid N N H H X=OH, NH Mechanism? 2 – Common acids: HCl, H2SO4, PPA, BF3/AcOH, ZnCl2, FeCl3, AlCl3, CoCl2, NiCl2, TsOH Japp-Maitland Condensation: – Regioselectivity not great with unsymmetrical ketones – Tolerates a wide range of substitution – Product regioselectivity affected by choice of acid, solvent, temperature 0.5 eq Japp-Klingemann Modification: OH HCl N R' NHNH2 H O O + acid CO2R'' + R OR'' D N2 N CH2R' H Buchwald Modification: Disconnection 3–Misc.: R' NH Larock Indole Synthesis: Br 1. Pd//BINAP N (Larock, R.C. J. Org. Chem. 1998, 63, 7652) + R R' R 2. TsOH N H R'' I R' Pharmaceutical Applications of the Fischer Indole Synthesis: + Pd(OAc)2 R' NH O Base N O N Me R R'' R N O S Me N OBn HN Me N – Base additives vary by reaction S O H O – High functional group tolerance O Imitrex® – Bulkier R group placed at C–2 of the indole MK-677 Glaxo NH •MsOH Merck 2 e.g. Heterocycles, 2000, 53, 665 T, 1997, 53, 10983 Sundberg, R.J. Indoles; Buchwald S.L. J. Am. Chem. Soc. 1998, 120, 6621 Bucherer, H.T. J. Prakt. Chem. 1908, 77, 403; Japp, F.R. ; Maitland, W.J. J. Chem. Soc. 1903, 83, 273 9/1/04 Richter Indole and Pyrrole Synthesis: " " Group Meeting Disconnection 3–Misc.: Disconnection 5: Bartoli Indole Synthesis: Stepwise: R'' 1. Zn BrMg Br 2. CuCN, LiCl + R R' N(TMS) 3. RCOCl N NO2 R' R'' N 2 H R 2 eq H R One pot: 1. 2.2 BuLi – Mechanism? R – Only works well with 2-substituted nitrobenzenes N NHX 2. RCO2Me H Castro Indole Synthesis: X = TMS, Boc I R Disconnection 6: + CuOTf R NH 2 N CHO CHO H RO C N RO2C N 2 TBDMSTf HO Disconnection 4: N N H H Hemetsberger Indole Synthesis: O CO2R D CO2R Disconnection 7: N CO R N 2 3 N H O – Formed by condensation of aromatic aldehyde with a-azoester with TsOH NaOEt, under very carefully controlled conditions to prevent N loss 2 N N – Yields = 30's – 90's H H R R – Unknown mechanism – not a nitrene insertion reaction OH Bartoli, G. Tetrahedron Lett. 1989, 30, 2129; Castro, C.E. J Org. Chem. 1966, 31, 4071 Sundberg, R.J. Indoles. 9/1/04 Richter Indole and Pyrrole Synthesis: " " Group Meeting Disconnection 8a: Disconnection 8b: Heck Approach: More Palladium: R CO2R X X CO2R R Pdo Pd(OAc)2 N N N N R' R' R' R' – Yields = 70's – 90's – Works best with an EWG on the olefin – Choice of base and protecting group on the nitrogen can affect the yield Photochemical: More Palladium: hn R o N taut.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us