Function Approximation with Mlps, Radial Basis Functions, and Support Vector Machines

Function Approximation with Mlps, Radial Basis Functions, and Support Vector Machines

Table of Contents CHAPTER V- FUNCTION APPROXIMATION WITH MLPS, RADIAL BASIS FUNCTIONS, AND SUPPORT VECTOR MACHINES ..........................................................................................................................................3 1. INTRODUCTION................................................................................................................................4 2. FUNCTION APPROXIMATION ...........................................................................................................7 3. CHOICES FOR THE ELEMENTARY FUNCTIONS...................................................................................12 4. PROBABILISTIC INTERPRETATION OF THE MAPPINGS-NONLINEAR REGRESSION .................................23 5. TRAINING NEURAL NETWORKS FOR FUNCTION APPROXIMATION ......................................................24 6. HOW TO SELECT THE NUMBER OF BASES ........................................................................................28 7. APPLICATIONS OF RADIAL BASIS FUNCTIONS................................................................................38 8. SUPPORT VECTOR MACHINES........................................................................................................42 9. PROJECT: APPLICATIONS OF NEURAL NETWORKS AS FUNCTION APPROXIMATORS ...........................52 10. CONCLUSION ..............................................................................................................................59 CALCULATION OF THE ORTHONORMAL WEIGHTS ..................................................................................63 SINC DECOMPOSITION........................................................................................................................64 FOURIER FORMULAS..........................................................................................................................65 EIGENDECOMPOSITION ......................................................................................................................65 WEIERSTRASS THEOREM ..................................................................................................................68 MULTI-HIDDEN-LAYER MLPS ..............................................................................................................69 OUTLINE OF PROOF ...........................................................................................................................69 LOCAL MINIMA FOR GAUSSIAN ADAPTATION.........................................................................................70 APPROXIMATION PROPERTIES OF RBF ...............................................................................................71 MDL AND BAYESIAN THEORY.............................................................................................................72 DERIVATION OF THE CONDITIONAL AVERAGE .......................................................................................73 PARZEN WINDOW METHOD.................................................................................................................74 RBF AS KERNEL REGRESSION ...........................................................................................................75 L1 VERSUS L2 ..................................................................................................................................75 FUNCTION APPROXIMATION ................................................................................................................76 FUNCTIONAL ANALYSIS ......................................................................................................................76 WEIERSTRASS ..................................................................................................................................76 SERIES .............................................................................................................................................77 SAMPLING THEOREM..........................................................................................................................77 SINC .................................................................................................................................................77 FOURIER SERIES ...............................................................................................................................77 DELTA FUNCTION...............................................................................................................................77 LINEAR SYSTEMS THEORY..................................................................................................................78 EIGENFUNCTIONS ..............................................................................................................................78 SHIFT-INVARIANT...............................................................................................................................78 COMPLEX NUMBER ............................................................................................................................78 STATISTICAL LEARNING THEORY .........................................................................................................78 MANIFOLD .........................................................................................................................................78 POLYNOMIALS ...................................................................................................................................79 SCIENTIFIC METHOD ..........................................................................................................................79 VOLTERRA EXPANSIONS ....................................................................................................................79 SQUARE INTEGRABLE ........................................................................................................................79 JORMA RISSANEN .............................................................................................................................79 AKAIKE .............................................................................................................................................79 TIKONOV ..........................................................................................................................................80 ILL-POSED.........................................................................................................................................80 INDICATOR FUNCTION ........................................................................................................................80 SPLINES............................................................................................................................................80 FIDUCIAL...........................................................................................................................................80 CODE................................................................................................................................................80 VC DIMENSION..................................................................................................................................80 COVER THEOREM .............................................................................................................................81 1 LEARNING THEORY ............................................................................................................................81 A. BARRON.......................................................................................................................................81 PARK AND SANDBERG, ......................................................................................................................81 BISHOP ............................................................................................................................................81 VLADIMIR VAPNIK..............................................................................................................................81 PARZEN E. .......................................................................................................................................82 SIMON HAYKIN..................................................................................................................................82 EQ.1 ................................................................................................................................................82 EQ.4 ................................................................................................................................................82 EQ.11 ..............................................................................................................................................82 EQ.2 ................................................................................................................................................82 EQ.14 ..............................................................................................................................................82 EQ.30 ..............................................................................................................................................83 EQ.25 ..............................................................................................................................................83 EQ.7 ................................................................................................................................................83

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    86 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us