The Man Who Designed Pakistan’s Nukes Just Died – And No One Noticed by Pervez Hoodbhoy Riazuddin 10 November 1930 – 9 September 2013 When Riazuddin—that was his full name—died in September at age 82 in Islamabad , international science organizations extolled his contributions to high- energy physics. But in Pakistan, his passing was little noticed. except for a few newspaper lines and a small reference held a month later at Quaid-e-Azam University, where he had taught for decades. In fact, very few Pakistanis have heard of the self-effacing and modest scientist who drove the early design and development of Pakistan’s nuclear program. Riazuddin never laid any claim to fathering the bomb—a job that requires the efforts of many—and after setting the nuclear ball rolling, he stepped aside. But without his theoretical work, Pakistan’s much celebrated bomb makers, who knew little of the sophisticated physics critically needed to understand a fission explosion, would have been shooting in the dark. A bomb maker and peacenik, conformist and rebel, quiet but firm, religious yet liberal, Riazuddin was one of a kind.. Mentored by Dr. Abdus Salam, his seminal role in designing the bomb is known to none except a select few. Spurred by Salam Born in Ludhiana in 1930 the twin brothers, Riazuddin and Fayyazuddin, were often mistaken for each other. Like other lower middle class Muslim children living in a religiously divided community, they attended the Islamia High School run by the Anjuman-i-Islamia philanthropy. The school had no notable alumni, and was similar to the town’s single public and two Hindu-run schools. Nothing suggested that these two boys squatting on floor mats, laboriously writing Urdu alphabets on wooden tablets were to become anything special. In March 1947, as the creation of Pakistan from India drew close, communal riots engulfed the Punjab. Neighbor turned against neighbor; the soil was drenched with blood as entire populations migrated from one side to the other. Riazuddin’s family entered Pakistan from the Wagah border in early October. The brothers enrolled at Lahore’s MAO College but soon moved to Government College, where they performed well but not spectacularly so. A teacher suggested that Riazuddin study physics rather than engineering. Riazuddin agreed, and Fayyazuddin followed. Riazuddin and Abdus Salam circa 1980 This rather uninteresting situation changed dramatically in 1951 when Salam came to town. Then 25, Salam was a rising star in the world of high-brow physics having just solved an important problem in quantum field theory, a newly emerging subject that was beyond the comprehension of all but the top-ranking physicists of the time. For his research on “overlapping divergences,” Salam was awarded the Adams Prize and offered a professorship at Cambridge University. He declined the offer and signed up instead as a professor of mathematics at Government College. In Lahore, one of Salam’s first initiatives was to introduce a course in quantum mechanics at Punjab University. Drawn by his reputation, students flocked to it; but only Riazuddin and Fayyazuddin could survive the tough mathematics involved. A disheartened Salam never taught the course again. But he had already identified the twins to be the best and brightest of those he encountered. Riazuddin was later invited to become his Ph.D. student at Cambridge. Helped by Salam, Fayyazuddin went to Imperial College London a couple of years later. The rest is history. As a student at MIT in the 1970s, I would sometimes be asked by my professors if I knew Riazuddin, to which I replied yes with some pride. His Ph.D. thesis in 1958 on certain regularities underlying nuclear forces had been noticed as a piece of important work, but his subsequent works elevated him to the ranks of the world’s better known physicists. His 1968 book, Theory of Weak Interactions in Particle Physics , coauthored with C. P. Ryan and Robert E. Marshak, became a bible for physicists. Riazuddin (L) and Fayyazuddin (R). As identical twins it was often hard to tell them apart. Another exceptionally important piece of work by Riazuddin was done together with Fayyazuddin, who became a prominent physicist in his own right. This work became widely known in physics literature as the Kawarabayashi-Suzuki- Riazuddin-Fayyazuddin Relation. The Pakistani and Japanese authors had done their respective work separately. Kawarabayashi and Suzuki acknowledged that they only became aware of Riazuddin and Fayyazuddin’s work after they had completed their own. The Relation has stood the test of experiment, but even today continues to tantalize physicists—because it works so much better than it really should. Riazuddin, Nobel laureate Gerard t'Hooft, and Faheem Hussain at a physics conference in Islamabad (2006). Atomic Enterprise The story of Pakistan’s bomb, at the least its early beginnings, is well known by now. In the aftermath of Pakistan’s humiliating defeat in December 1971, President Zulfikar Ali Bhutto convened a meeting in Multan on Jan. 20, 1972, to which the country’s preeminent scientists were invited. Bhutto exhorted them to make an atomic bomb, a desire he had first articulated in 1965. Now, it would be a means of avenging national humiliation. I. H. Usmani, then chairman of the Pakistan Atomic Energy Commission, opined that making the bomb was beyond Pakistan’s reach. Bhutto did not want to hear that. Usmani was unceremoniously replaced by Munir Ahmad Khan, an ambitious young engineer with more diplomatic and personal skills than engineering or scientific expertise. Abdus Salam speaking at Multan meeting while Zulfikar Ali Bhutto listens on. Usmani’s apprehension was reasonable. In 1972, the atomic bomb appeared well out of Pakistan’s reach. Creating the weapons that laid Hiroshima and Nagasaki to waste had required enormous effort and resources. The Manhattan Project, with its secret beginning in 1939, eventually employed nearly 130,000 people and cost about $26 billion. Some of the finest minds in physics gave their undivided attention to splitting the atom and, in the process, generated new technologies and scientific ideas. Even if Pakistan could somehow marshal the physical resources, how on earth could it get the required intellectual resources? Time was on Pakistan’s side. Every passing year was putting the bomb within the grasp of more and more nations. Once concealed under multiple layers of secrecy, the science behind the bomb slowly started to make its way out into the open in scientific literature. By the 1970s an enormous amount of such information was accessible; and physicists with sufficient breadth of understanding could do the job. Riazuddin, who was then Pakistan’s leading physicist, was abroad pursuing a scientific collaboration at the time of the Multan meeting. But his twin, Fayyazuddin, was present on the occasion. He shared with me his recollections: Bhutto’s call to action was not as emotive as were his public speeches. But, he recalls with some amusement, the assembled scientists sought to outbid each other as though at an auction. Tumbling over one another, each rose to declare that he could make the bomb even faster than the last speaker. At that time none had any idea of what this work entailed. A professor of experimental physics at Government College, Rafi Choudhury, emphatically claimed that only experimental physicists could make the bomb. To this, Salam—who was there at Bhutto’s special invitation—responded by saying that the nuclear programs of the U.S., Britain, India, and other countries had all been headed by theoretical physicists. Soon thereafter, perhaps around September 1972, Salam summoned Riazuddin to his office at the International Center for Theoretical Physics in Trieste, Italy. He had decided that Riazuddin was to design the bomb and, immediately upon his return to Islamabad, must create a group of theoretical physicists who would explore various technical aspects: the conceptual design for a nuclear device, calculation of the critical size of the fissile core, working out of a triggering mechanism, and finding the explosive yield for a variety of theoretical designs. Salam had already discussed the matter with Munir Ahmad Khan, with whom he had a warm relationship. Riazuddin should be given this task, Salam said. Khan agreed, Riazuddin dutifully complied. Riazuddin set about his assigned task by scouring available literature. He first went through the declassified Manhattan Project report. His scientific visits to the U.S. became more frequent. In 1973, he patiently studied documents at the Library of Congress, and purchased photocopies of a substantial number of unclassified or declassified reports from the Technical Information Service in Virginia. Of particular value was a series of lectures, declassified in 1965, delivered by nuclear physicist Robert Serber. The primer, addressed to members of the Los Alamos Laboratory, proved immensely valuable. While it did not contain detailed, classified information, it laid out all the conceptual issues. and turned out to be an excellent starting point for Pakistan’s novice bomb designer. The total cost was only a few hundred dollars. Armed with his recent findings, Riazuddin returned to brainstorm in 1973 with his colleagues at Islamabad University, later renamed Quaid-e-Azam University. By this time I was a junior faculty member there. The rest of us were dimly aware that something big was going on. We knew that the university was being used as a front organization for buying banned equipment. But it took decades for the whole truth to emerge. From Riazuddin’s group, even those physicists who were in the know slowly dropped out. Fayyazuddin was not interested but Masud Ahmad, who had just obtained his Ph.D. in physics under the twins, became the second member of Riazuddin’s team.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages11 Page
-
File Size-