Development of a Linear Ultrasonic Motor with Segmented Electrodes

Development of a Linear Ultrasonic Motor with Segmented Electrodes

Development of a Linear Ultrasonic Motor with Segmented Electrodes by Jacky Ka Ki Lau A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Mechanical and Industrial Engineering University of Toronto © Copyright by Jacky Ka Ki Lau 2012 Development of a Linear Ultrasonic Motor with Segmented Electrodes Jacky Ka Ki Lau Master of Applied Science Graduate Department of Mechanical and Industrial Engineering University of Toronto 2012 ABSTRACT A novel segmented electrodes linear ultrasonic motor (USM) was developed. Using a planar vibration mode concept to achieve elliptical motion at the USM drive-tip, an attempt to decouple the components of the drive-tip trajectory was made. The proposed design allows greater control of the drive-tip trajectory without altering the excitation voltage. Finite element analyses were conducted on the proposed design to estimate the performance of the USM. The maximum thrust force and speed are estimated to be 46N and 0.5370m/s, respectively. During experimental investigation, the maximum thrust force and speed observed were 36N and 0.223m/s, respectively, at a preload of 70N. Furthermore, the smallest step achievable was 9nm with an 18µs impulse. Nevertheless, the proposed design allowed the speed of the USM to vary while keeping the thrust force relatively constant and allowed the USM to achieve high resolution without a major sacrifice of thrust force. ii Acknowledgements I would like to thank everyone who helped me in to the completion of my thesis and my Master’s program. Special mention goes to the following people and organizations: My supervisor, Professor Ridha Ben Mrad, for his guidance and support throughout my project. He provided an excellent environment to conduct research and provided good advices and encouragement during my research. Professor James K. Mills, Professor Beno Benhabib, and Professor Goldie Nejat for their advices on the project through the CANRIMT UofT Node. Dr. Eswar Prasad and Dr. Sailu Namana of Sensor Technology Ltd. for their technical knowledge on piezoceramic. Members of MMDL, especially Alaeddin, Hirmand, Irman, James, Khalil, Mike, Sadegh, Sergey, Tae and Vainatey for their help, advices, friendship and making my studies enjoyable. Members of the CANRIMT UofT Node. My girlfriend and soul mate Aki for her support and understanding. Lastly, CANRIMT, NSERC and OGS for providing funding and financial support. iii Table of Contents Chapter 1 Introduction ......................................................................................................... 1 1.1 Background ................................................................................................................ 1 1.2 Literature Review on Piezoceramic Motor Technologies .......................................... 1 1.2.1 Piezoceramics and the Piezoelectric Effect ........................................................ 2 1.2.2 Quasi-Static Piezomotors .................................................................................... 3 1.2.3 Ultrasonic Motors (USMs) ................................................................................. 7 1.2.4 Summary ........................................................................................................... 15 1.3 Objectives and Motivation ....................................................................................... 16 1.4 Thesis Outline .......................................................................................................... 16 Chapter 2 RmMT Actuator Arrangement Concepts .......................................................... 18 Chapter 3 Motor Design .................................................................................................... 22 3.1 Background .............................................................................................................. 22 3.2 Assessment of Available USM Design and Development of the Novel Segmented Electrodes Motor Design ..................................................................................................... 24 3.2.1 Confirmation of the E(3,1) Vibration Mode ..................................................... 24 3.2.2 Piezoceramic Material Selection ....................................................................... 29 3.2.3 Analysis of Initial USM Concepts .................................................................... 30 3.2.4 Simple Dynamic Model Development .............................................................. 33 3.2.5 Geometrical Optimization To Characterize Performance of USM Based on the E(3,1) Concept ................................................................................................................. 36 3.2.6 New Segmented Electrodes Concept ................................................................ 38 Chapter 4 Experimental Assessment of Prototype ............................................................ 48 4.1 Motor Integration ..................................................................................................... 48 4.2 Static Analysis .......................................................................................................... 49 4.3 Experimental Setup for Speed, Force, and Resolution Testing ................................ 51 4.4 Assessment of Motor Performance Using One Amplifier ....................................... 54 4.5 Assessment of Motor Performance Using Two Amplifiers ..................................... 58 Chapter 5 Discussion and Conclusions ............................................................................. 62 5.1 Summary .................................................................................................................. 62 5.2 Recommendations and Future Research .................................................................. 63 References ............................................................................................................................... 64 Appendix A : Geometric Optimization Supplementary Data ............................................ 68 Appendix B : Segmented Electrodes Concept Supplementary Data ................................. 69 Appendix C : Segmented Electrodes Concept 2D FE Dynamic Analysis ......................... 71 Appendix D : Differential Electrode Voltage Concept ...................................................... 76 Appendix E : Impendence Analysis Supplementary Data ................................................ 81 Appendix F : Supplementary Data .................................................................................... 84 Appendix G : Piezoceramic and USM Drawings .............................................................. 86 iv List of Figures Figure 1.1: (a) No electrical field present; (b) With electrical field present. ............................ 2 Figure 1.2: PiezoLEGS® motors working principle [4]. .......................................................... 5 Figure 1.3: PiezoLEGS® motors working principle [4]. .......................................................... 5 Figure 1.4: Inchworm® motors working principle [4]. ............................................................ 6 Figure 1.5: SIDM motor working principle [4]. ....................................................................... 7 Figure 1.6: Sample standing-wave USM working principle [4]. .............................................. 8 Figure 1.7: Longitudinal and Bending Hybrid Motor using BLTs [21]. .................................. 9 Figure 1.8: Piezoceramic Hollow Cylinder working principle [4]. ........................................ 10 Figure 1.9: Standing-wave Rotary USM [24]. ........................................................................ 10 Figure 1.10: Actuator model and drive-tip motion path [26]. ................................................. 11 Figure 1.11: Nanomotion motor and its working principle [28]. ............................................ 12 Figure 1.12: Physik Instrumente motor and its working principle [20]. ................................. 13 Figure 1.13: Linear motor driven by BLTs [27]. .................................................................... 14 Figure 1.14: Rotary traveling-wave USM working principle [4]. .......................................... 15 Figure 2.1: RmMT concept drawing. ...................................................................................... 18 Figure 2.2: Linear Actuator Concepts for RmMT. ................................................................. 19 Figure 2.3: Concept #1 of curvilinear/annular actuator driving the vertical columns. ........... 20 Figure 2.4: Concept #2 of curvilinear/annular actuator driving the vertical columns. ........... 20 Figure 2.5: Linear actuator in (a) linear and (b) curvilinear application. ............................... 21 Figure 3.1: Piezo-plate and coordinate system used. .............................................................. 24 Figure 3.2: Coordinate system used with equations (3.3) and (3.4). ...................................... 25 Figure 3.3: Superposition of natural vibration and the stress-strain effect. ............................ 26 Figure 3.4: E(3,1) vibration mode at (a) 60.193 kHz and (b) 67.772 kHz. ............................ 27 Figure 3.5: y-displacement distribution (a) 60.193 kHz and (b) 67.772 kHz. ........................ 27 Figure 3.6: Drive-tip displacement results from harmonic analysis. ...................................... 27 Figure

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    112 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us