Assessing the Future of Hybrid and Electric Vehicles: The xEV Industry Insider Report Based on private onsite interviews with leading technologists and executives advanced automotive batteries ACKNOWLEDGEMENTS This study was conducted by Advanced Automotive Batteries. Dr. Menahem Anderman, President of Advanced Automotive Batteries and principal author of the study wishes to acknowledge the valuable contributions of the following individuals: • Dr. James George, former President, George Consulting International, Inc. • Mr. Kevin Konecky, Associate Consultant, Total Battery Consulting, Inc. • Dr. Robert Spotnitz, President, Battery Design Company • Prof. Martin Winter, Chair, Applied Material Science for Energy Conversion and Storage, Institute of Physical Chemistry, University of Muenster The author also wishes to acknowledge the cooperation of forty-three organiza- tions—listed below—who shared their professional know-how and views in sup- port of this study during and following one or more on-site interviews throughout the last ten months. Automakers/Automotive Systems Battery Producers Other Participants • Audi • A123 Systems • California Air Resources Board • AVL • AESC • Hitachi Chemical • BMW • Deutsche Accumotive • Mitsubishi Chemical • Chrysler • Dow Kokam • NEC Devices • Continental AG • Exide • Showa Denko • Daimler • GS Yuasa • Umicore • Ford • Hitachi • General Motors • Johnson Controls • Honda • LG Chem • Hyundai • Li Energy Japan • Magna E-Car • Primearth EV Energy • Mitsubishi Motors • Panasonic-Sanyo • Opel AG • Robert Bosch • Porsche • Samsung • PSA Peugeot Citroën • SK Innovation • Renault • Toshiba • Robert Bosch • Toyota • Valeo • Volkswagen • ZF Sachs Finally, our thanks to Catherine Searle for her dedicated work in the preparation of this report and to Jennifer for her support. TABLE OF CONTENTS Executive Summary ............................................. 1 Chapter I: 1. xEV Vehicle Technology ..................................................... 2 Introduction and Hybrid-Vehicle a. Market Drivers .................................................................... 2 Technologies ...................................................... 21 b. Hybrid-Vehicle Architecture ............................................... 2 1. Introduction ........................................................................ 22 2. HEV Battery Technology .................................................... 2 2. Powertrain Technology .................................................... 24 a. Cell Module and Pack Technology .................................... 2 3. Electrical Power on Board Vehicles ................................ 25 b. Key Energy-Storage Technologies for HEVs ..................... 4 a. Power Generation and Demand ...................................... 25 i) Lead-Acid Batteries ..........................................................4 b. Electrically Powered Ancillaries and Accessories ........... 25 ii) Nickel-Metal Hydride Batteries .........................................5 4. The Stop/Start Function ................................................... 26 iii) Lithium-Ion Batteries ........................................................6 iv) Ultracapacitors ..................................................................6 5. Hybrid-Vehicle Powertrain Architectures ....................... 27 a. Overview .......................................................................... 27 3. Battery Requirements and Battery Selection for Each Hybrid-Vehicle Category ..................................... 6 b. Series-Hybrid Architectures ............................................. 27 a. Overview ............................................................................ 6 c. Classical Parallel Architectures ....................................... 27 b. Micro 2 ............................................................................... 6 d. The Integrated Starter Generator (ISG), or Integrated Motor Assist (IMA) ...................................... 28 c. Mild-1 – 48V Systems ........................................................ 7 e. Series/Parallel Single-Mode d. Energy Storage for hybrid Cars - Summary ...................... 8 Transmission Power-Split Architectures .......................... 28 4. Batteries for EVs & PHEVs ................................................. 8 6. Levels of Powertrain Hybridization ................................. 29 a. EV & PHEV Battery Cost ................................................... 8 a. Micro Hybrids ................................................................... 29 b. EV Cell and Pack Key Characteristics ..............................11 b. Mild Hybrids ..................................................................... 30 c. PHEV Pack Key Characteristics .......................................12 c. Moderate Hybrids ............................................................. 30 d. Life, Reliability, and Safety ................................................12 d. Strong Hybrids ..................................................................31 e. Technology Enhancement Roadmap ................................13 e. Plug-in Hybrids ..................................................................31 5. xEV Vehicle Market.............................................................13 7. Hybridization of Specialty Vehicles .................................31 a. Market Drivers and Challenges for xEVs ..........................13 8. Hybridization Summary .....................................................31 b. Market Forecast for xEVs .................................................14 c. xEV Market Conclusions ...................................................16 Chapter II: Energy Storage Technologies for HEVs .......... 33 6. Battery Market for xEVs.....................................................17 1. High-Power Battery Technology Key Attributes ........... 34 a. Battery Markets for xEVs through 2016 ............................17 a. Introduction ...................................................................... 34 i) Micro Hybrids .................................................................. 17 ii) Strong/Mild HEVs ........................................................... 17 b. Battery Impedance and Power Rating ............................. 34 iii) PHEVs ............................................................................. 18 c. Battery Life, Reliability, and Safety / Abuse Tolerance ... 36 iv) EVs .................................................................................. 18 2. Energy-Storage Systems v) Combined Li-Ion Cell Markets ........................................ 18 and Module/Pack Technology .......................................... 37 vi) Combined xEV Pack Markets ......................................... 18 a. Introduction ...................................................................... 37 b. xEV Battery Market to 2020 ..............................................19 b. Battery Module ................................................................. 38 c. Industry Overcapacity .......................................................19 c. Thermal Subsystems ....................................................... 38 d. Mechanical and Structural Subsystems .......................... 40 Chapter III: e. Battery Management Systems (BMS) Battery Requirements and the Choice of and Electronics Hardware ................................................ 40 Battery for Each Hybrid Vehicle Category ...... 71 f. Battery Management System Software ............................41 1. Overview ............................................................................. 72 g. ESS Safety Considerations...............................................41 2. Basic Requirements and Conventional 3. Lead-Acid Batteries .......................................................... 42 SLI Applications ................................................................ 72 a. Introduction .......................................................................42 a. Requirements ................................................................... 72 b. Enhanced Flooded Lead-Acid Batteries (EFLAs) ............ 43 b. Energy-Storage Solutions ................................................ 73 c. AGM VRLA Designs ........................................................ 44 3. Micro-1 – Stop/Start Vehicles d. VRLA Performance .......................................................... 44 with No Regenerative Braking ......................................... 73 e. VRLA Life ......................................................................... 45 a. Load Profile and Energy-Storage Requirements ............. 73 f. Manufacturing and Cost Considerations b. Energy-Storage Solutions .................................................74 for Enhanced-flooded and VRLAs ................................... 46 4. Micro-2 – Stop/Start Vehicles g. New Lead-Acid Designs .................................................. 46 with Regenerative Braking ................................................74 i) Batteries incorporating a. Load Profile and Energy-Storage Requirements ..............74 a high-surface area capacitive carbon ...........................46 b. Energy-Storage Solutions .................................................75 ii) Bipolar Designs ...............................................................47 i) VRLA battery ..................................................................76 h. Lead-Acid Outlook ............................................................47
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages32 Page
-
File Size-