University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES SCHOOL OF OCEAN AND EARTH SCIENCE The Biogeochemical Role of Coccolithus pelagicus by Chris James Daniels Thesis for the degree of Doctor of Philosophy June 2015 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NAUTRAL AND ENVIRONMENTAL SCIENCES SCHOOL OF OCEAN AND EARTH SCIENCE Doctor of Philosophy THE BIOGEOCHEMICAL ROLE OF COCCOLITHUS PELAGICUS by Chris James Daniels Coccolithophores are a biogeochemically important group of phytoplankton, responsible for around half of oceanic carbonate production through the formation of calcite coccoliths. Globally distributed, Emiliania huxleyi is generally perceived to be the key calcite producer, yet it has a relatively low cellular calcite content (~ 0.4 – 0.7 pmol C cell -1) compared to heavily calcified species such as Coccolithus pelagicus (~ 15 – 21 pmol C cell -1). This study set out to test the central hypothesis that C. pelagicus has a significant biogeochemical role, dominating calcite production within mixed communities in the North Atlantic. Cultures of Coccolithus species (C. pelagicus, C. braarudii) and E. huxleyi were grown in parallel to examine relative growth rates, and relative calcite production was modelled. While E. huxleyi grew faster than C. pelagicus , it was estimated that at the average relative growth rate observed, C. pelagicus calcified at a rate equivalent to 34 cells of E. huxleyi . This was compared to field samples of abundances from the North Atlantic, where C. pelagicus was found to be the major calcite producer in 69 % of the samples. At two sites in the North Atlantic (Iceland Basin, Norwegian Sea), repeat samples were collected during the early stages of the spring bloom to examine phytoplankton community dynamics and the role of coccolithophores. The two sites had contrasting communities with diatoms dominant in the Iceland Basin, but absent in the Norwegian Basin. The coccolithophore community was generally similar, with E. huxleyi dominating abundance and C. pelagicus dominating coccolithophore calcite. In situ growth rates found that C. pelagicus grew faster than E. huxleyi . In the Arctic and North Atlantic, species-specific calcite production was determined from measurements of calcite production and community composition. The results of this study indicated that C. pelagicus dominated calcite production despite forming only a small fraction (< 2 %) of the community. In the synthesis, the seasonal contribution of C. pelagicus to calcite production was determined, using measured growth rates to estimate calcite production in spring. Coccolithus pelagicus was found to be the major source of calcite in the North Atlantic throughout the early to late spring and summer. When C. pelagicus was absent, other heavily calcified species, such as Coronosphaera mediterranea and Helicosphaera carteri , were important sources of calcite. i Table of Contents Chapter 1: General Introduction 1 Phytoplankton ........................................................................................ 1 Carbon cycle ........................................................................................... 2 Biological carbon pump .............................................................. 2 Coccolithophores ................................................................................... 4 Coccolithophore calcification and the carbonate pump ............ 7 Ocean acidification ..................................................................... 9 Species-specific biogeochemical roles of coccolithophores .................. 10 Coccolithus pelagicus .................................................................. 11 Motivations, aims and hypotheses ........................................................ 13 Thesis Outline ......................................................................................... 13 Chapter 2: Biogeochemical implications of comparative growth rates of Emiliania huxleyi and Coccolithus species 15 Introduction............................................................................................ 16 Materials and Methods .......................................................................... 19 Experimental Design ................................................................... 19 Field samples .............................................................................. 21 Results and Discussion ........................................................................... 22 Growth rates ............................................................................... 22 Modelling relative calcite production ........................................ 24 The importance of relative abundance ...................................... 29 Implications of cell size differences............................................ 32 Conclusion .............................................................................................. 34 Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers 37 Introduction............................................................................................ 39 Mechanisms of spring bloom formation .................................... 39 Phytoplankton communities in spring blooms .......................... 41 iii Coccolithophores in spring blooms ............................................. 42 Chapter outline ............................................................................ 43 Methods .................................................................................................. 43 Sampling ...................................................................................... 43 Primary production ..................................................................... 44 Community structure .................................................................. 45 Chlorophyll a ............................................................................... 46 Ancillary parameters ................................................................... 47 Data availability ........................................................................... 48 Results ..................................................................................................... 48 General oceanography ................................................................ 48 Chlorophyll a ............................................................................... 52 Primary production ..................................................................... 55 Community structure .................................................................. 56 3.3.4.1 Community structure – picoplankton and nanoplankton ............................................................... 56 3.3.4.2 Community structure – coccolithophores .................... 56 3.3.4.3 Community structure – diatoms and microzooplankton ......................................................... 59 Discussion ................................................................................................ 61 Time series or mixing? ................................................................. 61 Drivers of the phytoplankton bloom ........................................... 62 Overall community composition ................................................. 65 Contrasting patterns of diatoms ................................................. 67 Biogeochemistry and dynamics of the coccolithophore community .................................................................................. 70 Conclusions ............................................................................................. 74 Chapter 4: Species-specific calcite production reveals Coccolithus pelagicus as the key calcifier in the Arctic Ocean 77 Introduction ............................................................................................ 78 Methods .................................................................................................. 81 Sampling ...................................................................................... 81 Calcite Production ....................................................................... 82 Coccolithophore community structure ....................................... 83 iv Species-specific calcite production ............................................ 83 Macronutrients and carbonate chemistry ................................. 86 Statistical analysis ....................................................................... 86 Results .................................................................................................... 87 General Oceanography
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages192 Page
-
File Size-