2017 Recuperación de suelos de mina combinando la aplicación de suelos combinando de mina la aplicación Recuperación TESE DE DOUTORAMENTO ” Recuperación de suelos de mina combinando la aplicación de enmiendas elaboradas con residuos con la fitoremediación Rubén Forján Castro 2017 “TESE DE DOUTORAMENTO DE “TESE Rubén Forján CastroRubén elaboradas la con fitoremediación residuos enmiendas con de Escola Internacional de Doutoramento Rubén Forján Castro TESE DE DOUTORAMENTO Recuperación de suelos de mina combinando la aplicación de enmiendas elaboradas con residuos con la fitoremediación Dirixida pola doutora: Emma Fernández Covelo 2017 Rubén Forján Castro foi beneficiario dunha beca predouctoral da Universidade de Vigo, entre os anos 2014 e 2016. (Aplicación orzamentaria 00VI 131H 641.03). E actualmente contratado a cargo proxecto 10404 CANICOUVA. Este traballo tamén foi financiado polo proxecto CGL2016-78660-R A mi familia Índice Índice 1. Introducción……………………………………………………………….27 1.1 Degradación y contaminación (estado)……………………………………..…27 1.2 Minería de superficie………………………………………………………….29 1.2.1 La mina de Touro……………………………………………………..31 1.2.2 Residuos mineros…………………………………………………...…32 1.3 Producción y gestión de residuos………………………………...................…33 1.4 Residuos y Enmiendas…..………………………………………………….….36 1.4.1 Compost……………………………………………………...………..37 1.4.2 Tecnosoles………………………………………………………...…..39 1.4.3 Biochar…………………………………………………….………….43 1.4.4 Capacidad de sorción de las enmiendas elaboradas con residuos (compost, tecnosol, biochar)…………………………………….…….46 1.5 Fitoremediación………………………………………………………………..48 1.5.1 Fitoestabilización………………………………………...………………48 2. Estudios previos 2.1 Effect of amendments made of waste materials in the physical and chemical recovery of mine soil…………………………….……………………………………………..55 Abstract…………………………………………………………………………………56 1. Introduction………………………………………………………………………...55 2. Material and methods………………………………………………………………56 3. Results……………………………………………………………………………...57 3.1 Physico-chemical characteristics of the mine soil (S), amendments (A1 and A2) and treated soils (SA1 and SA2) at the initial time……………………………57 3.2 Evolution of the physical–chemical characteristics in the amended and unamended soil over the 3-month period……………………………………...58 11 Índice 4. Discussion………………………………………………………………………….60 5. Conclusions………………………………………………………………………...60 6. References………………………………………………………………………….60 2.2 Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing………………………………………………………………………….....65 Abstract………………………………………………………………...……………….65 1. Introduction…………………………………………………………………...……65 2. Material and methods………………………………………………………...…….66 2.1 Study area and amendments………………………………...………...……….66 2.2 Experiment design and soil chemical analyses…………………..…………….66 2.3 Sorption experiment and construction of isotherms………………………...…66 2.4 Statistical analyses…………………………………………………………..…66 3. Results……………………………………………………………………………...67 3.1 Characteristics of the mine tailing (S), amendment (T) and biochar (B)……...67 3.2 Characteristics of the mine tailing (S), mine tailing amended with amendment mixtures (STB20, STB40%, STB60%) and biochar amendment (TB100%)…67 3.3 Sorption isotherms of Cu, Pb and Zn……………………………………….....67 3.4 Estimation of the sorption capacity using the distribution coefficient Kr…..…68 3.5 Selectivity sequences for Cu, Pb and Zn………………………………………68 4. Discussion……………………………………………………………………….…68 4.1 Characteristics of the mine tailing (S), mine spoil material amended with amendment mixtures (STB20, STB40%, STB60%) and biochar amendment (TB100%)……………………………………………………………………...68 4.2 Sorption capacity of mine tailing for Ni, Pb and Zn…………......…………....69 4.3 Selectivity sequences for Cu, Pb and Zn….70 5. Conclusions………………………………………………………………………….69 12 Índice 6. References………………………………………………………………………..….70 2.3 Contributions of a compost-biochar mixture to the metal sorption capacity of a mine tailing………………………………………….………………………………………….75 Abstract…………………………………………………………………………………75 1. Introduction………………………………………………………………………...75 2. Material and methods……………………………………………………………....76 2.1 Study area and experiment design………………………………………….….76 2.2 Chemical analyses……………………………………………………………..76 2.3 Sorption experiment and construction of isotherms…………………………...76 2.4 Statistical analyses………………………………………………………….….77 3. Results…………………………………………………………………………..….77 3.1 Characteristics of the mine tailing (S), compost (C) and biochar (B)………....77 3.2 Characteristics of the mine tailing (S), amended mine tailing (SCB20 %, SCB40 %, SCB60 %) and the compost + biochar positive control (CB100 %)……….78 3.3 Sorption capacity of Cu, Pb and Zn by the amended and unamended mine tailing……………………………………………………….………………….78 4. Discussion………………………………………………………………………….79 4.1 General characteristics of the studied samples……………………………...…79 4.2 Sorption capacity of the studied samples for Cu, Pb and Zn……………….….80 5. Conclusions………………………………………………………………………...81 6. References………………………………………………………………………….81 3. Justificación y objetivos…………………………………………...………87 4. Capítulo 1 Changes in phytoavailable concentrations in a mine soil following the application of technosols and biochar with Brassica juncea L...............................................93 13 Índice Abstract…………………………………………………………………………………93 1. Introduction………………………………………………………………………...94 2. Material and Methods……………………………………………………………...96 2.1 Soil sampling…………………………………………………………………..96 2.2 Greenhouse Experiment……………………………………………………….98 2.3 Soil Analysis………………………………………………………………..…99 2.4 Plant Growth and Determination of Metals in Plant Tissues……..….………100 2.5 Statistical Analysis……………………………………………………...……101 3. Results…………………………………………………………………………….101 3.1 General Characteristics of the Settling Pond Soil (S), Sand (SS), Technosol (T), and Biochar (B)…………………………………………………………...….101 3.2 Evolution of the Pseudototal Concentrations of Cu, Pb, Ni, Zn at Three Heights and over the 11-Month Period………………………………………………..103 3.3 Evolution of CaCl2-Extractable (Phytoavailable) Contents of Cu, Pb, Ni, Zn at Three Heights and over the 11-Month Period………………………………..105 3.4 Harvestable Amounts of Cu, Pb, Ni, Zn and Determination of Metals in Plant Tissues: Translocation Factor (TF) and Transfer Coefficient (TC)………….108 3.4.1 Translocation Factor (TF)…………………………………………....108 3.4.2 Transfer Coefficient (TrC)…………………………………………..112 4. Discusion……………………………………………………………………...…..113 4.1 Evolution of the Pseudototal Contents of Cu, Pb, Ni, Zn at Three Heights and Over the 11-Month Period……………………………………………………113 4.2 Evolution of the CaCl2-Extractable (Phytoavailable) Concentrations of Cu, Pb, Ni, Zn at Three Heights and over the 11-Month Period…………..………….114 4.3 Uptake and Transfer of Metals to Mustards………………………………….116 4.3.1 Harvestable Amounts of Cu, Pb, Ni, Zn…………………………..…116 4.3.2 Transfer Coefficient (TrC)……………………………………….….116 14 Índice 4.3.3 Translocation Factor (TF)……………………………………………117 5. Conclusion………………………………………………………………………..117 6. References………………………………………………………………………...118 5. Capítulo 2 Application of Compost and Biochar with Brassica juncea L. to Reduce Phytoavailable Concentrations in a Settling Pond Mine Soil…………..………...127 Abstract………………………………………………………………………………..127 1. Introduction……………………………………………………………………….127 2. Materials and Methods………………………………………………………...….128 2.1 Soil Sampling…………………………………………………………...……128 2.2 Greenhouse Experiment………………………………………………...……129 2.3 Soil Analysis…………………………………………………………….……130 2.4 Plant Growth and Determination of Metals in Plant Tissues………………...130 2.5 Statistical Analysis………………………………………………………..….130 3. Results…………………………………………………………………………….131 3.1 General Characteristics of Settling Pond Soil (S), Sand (SS), Compost (C), and Biochar (B)……………………………………………………………..…….131 3.2 Evolution of the Pseudo‑total Contents of Cu, Pb, Ni, and Zn at the Three Different Depths and Over the 11‑Month Period……………………...……..131 3.3 Evolution of the CaCl2‑Extractable (Phytoavailable) Contents of Cu, Pb, Ni, and Zn at the Three Different Depths and over the 11‑Month Period………..132 3.4 Harvestable Amounts of Cu, Pb, Ni, and Zn and Determination of Metals in Plant Tissues: Translocation Factor (TF) and Transfer Coefficient (TC)……134 3.4.1 Harvestable Amounts of Cu, Pb, Ni, and Zn in Brassica juncea L..134 3.4.2 Transfer Coefficient (TC)…………………………………………....134 3.4.3 Translocation Factor (TF)………………..…………………………..137 4. Discussion………………………………………………………………………...137 15 Índice 4.1 Changes in Pseudo‑Total Soil Cu, Pb, Ni, and Zn at the Three Different Depths and Over the 11‑Month Period……………………………………………….137 4.2 Changes in CaCl2‑Extractable (Phytoavailable) Concentrations of Cu, Pb, Ni, and Zn at the Three Different Depths and Over the 11‑Month Period…….....137 4.3 Harvestable Amounts of Cu, Pb, Ni, and Zn and Metal Concentrations in Plant Tissues: Translocation Factor (TF) and Transfer Coefficient (TC)……….....138 5. Conclusions……………………………………………………………………….138 6. References………………………………………………………………………...138 6. Anexos……………………………………………………………...………………143 6.1 Anexo I Increasing the nutrient content in a mine soil through the application of technosol and biochar and grown with Brassica juncea L.………………..……………147 Abstract………………………………………………………………………………..147 1. Introduction……………………………………………………………………….148 2. Material and Methods…………………………………………………………….151 2.1 Soil sampling and amendments……………...……………………………….151 2.2 Greenhouse experiment………………………………………………………152 2.3 Soil, technosol and biochar analysis………………………………………….154 2.4
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages336 Page
-
File Size-