SOME PROGRESS in CONFORMAL GEOMETRY Sun-Yung A. Chang, Jie Qing and Paul Yang Dedicated to the Memory of Thomas Branson 1. Confo

SOME PROGRESS in CONFORMAL GEOMETRY Sun-Yung A. Chang, Jie Qing and Paul Yang Dedicated to the Memory of Thomas Branson 1. Confo

<p>SOME PROGRESS IN CONFORMAL GEOMETRY </p><p>Sun-Yung A. Chang, Jie Qing and Paul Yang </p><p>Dedicated to the memory of Thomas Branson </p><p>Abstract. In this paper we describe our current research in the theory of partial differential equations in conformal geometry.&nbsp;We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4.&nbsp;As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the σ<sub style="top: 0.11em;">2</sub>-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes. </p><p>1. Conformal&nbsp;Gap and finiteness Theorem for a class of closed 4-manifolds </p><p>1.1 Introduction </p><p>Suppose that (M<sup style="top: -0.36em;">4</sup>, g) is a closed 4-manifold.&nbsp;It follows from the positive mass theorem that, for a 4-manifold with positive Yamabe constant, </p><p>Z</p><p>σ<sub style="top: 0.15em;">2</sub>dv ≤ 16π<sup style="top: -0.41em;">2 </sup></p><p>M</p><p>and equality holds if and only if (M<sup style="top: -0.36em;">4</sup>, g) is conformally equivalent to the standard 4-sphere, where </p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>2</p><p>σ<sub style="top: 0.15em;">2</sub>[g] = </p><p>R<sup style="top: -0.42em;">2 </sup>− |E| , </p><p></p><ul style="display: flex;"><li style="flex:1">24 </li><li style="flex:1">2</li></ul><p>R is the scalar curvature of g and E is the traceless Ricci curvature of g. This&nbsp;is an interesting fact in conformal geometry because the above integral is a conformal invariant like the Yamabe constant. </p><p>Typeset by A S-T X </p><p>M E </p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">CONFORMAL GEOMETRY </li></ul><p></p><p>One may ask, whether there is a constant ꢀ<sub style="top: 0.15em;">0 </sub>&gt; 0 such that a closed 4-manifold <br>M<sup style="top: -0.36em;">4 </sup>has to be diffeomorphic to S<sup style="top: -0.36em;">4 </sup>if it admits a metric g with positive Yamabe constant and </p><p>Z</p><p>σ<sub style="top: 0.15em;">2</sub>[g]dv<sub style="top: 0.15em;">g </sub>≥ (1 − ꢀ)16π<sup style="top: -0.42em;">2</sup>. </p><p>M</p><p>for some ꢀ &lt; ꢀ<sub style="top: 0.15em;">0</sub>? Notice&nbsp;that here the Yamabe invariant for such [g] is automatically close to that for the round 4-sphere.&nbsp;There is an analogous gap theorem of Bray and Neves for Yamabe invariant in dimension 3 [BN]. One cannot expect the Yamabe invariant alone to isolate the sphere, and it is more plausible to consider the integral of σ<sub style="top: 0.15em;">2</sub>. We&nbsp;will answer the question affirmatively in the class of Bach flat 4-manifolds. <br>Recall that Riemann curvature tensor decomposes into </p><p>R<sub style="top: 0.15em;">ijkl </sub>= W<sub style="top: 0.15em;">ijkl </sub>+ (A<sub style="top: 0.15em;">ik</sub>g<sub style="top: 0.15em;">jl </sub>− A<sub style="top: 0.15em;">il</sub>g<sub style="top: 0.15em;">jk </sub>− A<sub style="top: 0.15em;">jk</sub>g<sub style="top: 0.15em;">il </sub>+ A<sub style="top: 0.15em;">jl</sub>g<sub style="top: 0.15em;">ik</sub>), </p><p>in dimension 4, where W<sub style="top: 0.15em;">ijkl </sub>is the Weyl curvature, </p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>A<sub style="top: 0.15em;">ij </sub>= (R<sub style="top: 0.15em;">ij </sub>− Rg<sub style="top: 0.15em;">ij</sub>) </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">6</li></ul><p>is Weyl-Schouten curvature tensor and R<sub style="top: 0.15em;">ij </sub>is the Ricci curvature tensor.&nbsp;Also recall that the Bach tensor is </p><p>1</p><p>B<sub style="top: 0.15em;">ij </sub>= W<sub style="top: 0.15em;">kijl,lk </sub>+ R<sub style="top: 0.15em;">kl</sub>W<sub style="top: 0.15em;">kijl </sub></p><p>.</p><p>2<br>We say that a metric g is Bach flat if B<sub style="top: 0.15em;">ij </sub>= 0.&nbsp;Bach flat metrics are critical metrics </p><p>2</p><p>R</p><p>for the functional&nbsp;<sub style="top: 0.35em;">M </sub>|W| dv. Bach&nbsp;flatness is conformally invariant in dimension 4. It follows from Chern-Gauss-Bonnet, </p><p>Z</p><p>2</p><p>8π<sup style="top: -0.41em;">2</sup>χ(M<sup style="top: -0.41em;">4</sup>) = </p><p>(σ<sub style="top: 0.15em;">2 </sub>+ |W| )dv, </p><p>M</p><p>R</p><p>that <sub style="top: 0.36em;">M </sub>σ<sub style="top: 0.15em;">2</sub>dv is conformally invariant. <br>The gap theorem is as follows: </p><p>Theorem 1.1.1.&nbsp;Suppose that (M<sup style="top: -0.36em;">4</sup>, [g]) is a Bach flat closed 4-manifold with positive Yamabe constant and that </p><p>Z</p><p>2</p><p>(|W| dv)[g] ≤ Λ<sub style="top: 0.15em;">0</sub>. </p><p>M</p><p>for some fixed positive number Λ<sub style="top: 0.15em;">0</sub>. Then&nbsp;there is a positive number ꢀ<sub style="top: 0.15em;">0 </sub>&gt; 0 such that, if </p><p>Z</p><p>σ<sub style="top: 0.15em;">2</sub>[g]dv<sub style="top: 0.15em;">g </sub>≥ (1 − ꢀ)16π<sup style="top: -0.41em;">2 </sup></p><p>M</p><p></p><ul style="display: flex;"><li style="flex:1">CHANG, QING AND YANG </li><li style="flex:1">3</li></ul><p></p><p>holds for some constant ꢀ &lt; ꢀ<sub style="top: 0.15em;">0</sub>, then (M<sup style="top: -0.36em;">4</sup>, [g]) is conformally equivalent to the standard 4-sphere. </p><p>Our approach is based on the recent work on the compactness of Bach flat metrics on 4-manifolds of Tian and Viaclovsky [TV1][TV2], and of Anderson [An]. Indeed our work relies on a more precise understanding of the bubbling process near points of curvature concentration.&nbsp;For that purpose we develop the bubble tree structure in a sequence of metrics that describes precisely the concentration of curvature.&nbsp;Our method to develop bubble tree structure is inspired by the work of Anderson and Cheeger [AC] on the bubble tree configurations of the degenerations of metrics of bounded Ricci curvature.&nbsp;Our construction is modeled after this work but differs in the way that our bubble tree is built from the bubbles at points with the smallest scale of concentration to bubbles with larger scale; while the bubble tree in [AC] is constructed from bubbles of large scale to bubbles with smaller scales.&nbsp;The inductive method of construction of our bubble tree is modeled on earlier work of [BC], [Q] and [St] on the study of concentrations of energies in harmonic maps and the scalar curvature equations. <br>As a consequence of the bubble tree construction we are able to obtain the following finite diffeomorphism theorem: </p><p>Theorem 1.1.2.&nbsp;Suppose that A is a collection of Bach flat Riemannian manifolds (M<sup style="top: -0.36em;">4</sup>, g) with positive Yamabe constant, satisfying </p><p>Z</p><p>2</p><p>(|W| dv)[g] ≤ Λ<sub style="top: 0.15em;">0</sub>, </p><p>M</p><p>for some fixed positive number Λ<sub style="top: 0.15em;">0</sub>, and </p><p>Z</p><p>(σ<sub style="top: 0.15em;">2</sub>dv)[g] ≥ σ<sub style="top: 0.15em;">0</sub>, </p><p>M</p><p>for some fixed positive number σ<sub style="top: 0.15em;">0</sub>. Then there are only finite many diffeomorphism types in A. </p><p>It is known that in each conformal class of metrics belonging to the family A, there is a metric g¯ = e<sup style="top: -0.36em;">2w</sup>g such that σ<sub style="top: 0.15em;">2</sub>(A<sub style="top: 0.15em;">g¯</sub>) = 1, which we shall call the σ<sub style="top: 0.15em;">2 </sub>metric. The bubble tree structure in the degeneration of Yamabe metrics in A is also helpful to understand the behavior of the σ<sub style="top: 0.15em;">2</sub>-metrics in A. For example: </p><p>Theorem 1.1.3. For the conformal classes [g<sub style="top: 0.15em;">0</sub>] ∈ A the conformal metrics g = e<sup style="top: -0.36em;">2w</sup>g<sub style="top: 0.15em;">0 </sub>satisfying the equation σ<sub style="top: 0.15em;">2</sub>(g) = 1 has a uniform bound for the diameter. </p><p>1.2 The Neck Theorem </p><p></p><ul style="display: flex;"><li style="flex:1">4</li><li style="flex:1">CONFORMAL GEOMETRY </li></ul><p></p><p>The main tool we need to develop the bubble tree picture is the neck theorem which should be compared with the neck theorem in the work of Anderson and Cheeger [AC]. Due to the lack of point-wise bounds on Ricci curvature, our version of the neck theorem will have weaker conclusion.&nbsp;But it is sufficient to allow us to construct the bubble tree at each point of curvature concentration. <br>Let (M<sup style="top: -0.36em;">4</sup>, g) be a Riemannian manifold.&nbsp;For a point p ∈ M, denote by B<sub style="top: 0.15em;">r</sub>(p) the geodesic ball with radius r centered at p, S<sub style="top: 0.15em;">r</sub>(p) the geodesic sphere of radius r centered at p. Consider the geodesic annulus centered at p: </p><p>¯</p><p>A<sub style="top: 0.15em;">r ,r </sub>(p) = {q ∈ M : r<sub style="top: 0.15em;">1 </sub>≤ dist(q, p) ≤ r<sub style="top: 0.15em;">2</sub>}. </p><p>In general, A<sub style="top: 0.15em;">r ,r </sub>(p) may have more than one connected components.&nbsp;We will consider any one component </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>¯</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>¯</p><p>A<sub style="top: 0.15em;">r ,r </sub>(p) ⊂ Ar<sub style="top: 0.15em;">1</sub>, r<sub style="top: 0.15em;">2</sub>(p) </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>that meets the geodesic sphere of radius r<sub style="top: 0.15em;">2</sub>: </p><p>\</p><p>A<sub style="top: 0.15em;">r ,r </sub>(p) S<sub style="top: 0.15em;">r </sub>(p) = ∅ <br>Let H<sup style="top: -0.36em;">3</sup>(S<sub style="top: 0.15em;">r</sub>(p)) be the 3D-Hausdorff measure of the geodesic sphere S<sub style="top: 0.15em;">r</sub>(p). </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>Theoerm 1.2.1.&nbsp;Suppose (M<sup style="top: -0.36em;">4</sup>, g) is a Bach flat and simply connected 4-manifold with a Yamabe metric of positive Yamabe constant.&nbsp;Let p ∈ M, α ∈ (0, 1), ꢀ &gt; 0, v<sub style="top: 0.15em;">1 </sub>&gt; 0, and a &lt; dist(p, ∂M). Then there exist positive numbers δ<sub style="top: 0.15em;">0</sub>, c<sub style="top: 0.15em;">2</sub>, n&nbsp;depending on ꢀ, α, C<sub style="top: 0.15em;">s</sub>, v<sub style="top: 0.15em;">1</sub>, a&nbsp;such that the following holds. Let A<sub style="top: 0.15em;">r ,r </sub>(p) be a connected compo- </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>nent of the geodesic annulus in M such that </p><p></p><ul style="display: flex;"><li style="flex:1">r<sub style="top: 0.15em;">2 </sub>≤ c<sub style="top: 0.15em;">2</sub>a, </li><li style="flex:1">r<sub style="top: 0.15em;">1 </sub>≤ δ<sub style="top: 0.15em;">0</sub>r<sub style="top: 0.15em;">2</sub>, </li></ul><p>H<sup style="top: -0.41em;">3</sup>(S<sub style="top: 0.15em;">r</sub>(p)) ≤ v<sub style="top: 0.15em;">1</sub>r<sup style="top: -0.41em;">3</sup>, ∀r ∈ [r<sub style="top: 0.15em;">1</sub>, 100r<sub style="top: 0.15em;">1</sub>], </p><p>and </p><p>Z</p><p>2</p><p>|Rm| dv ≤ δ<sub style="top: 0.15em;">0</sub>. </p><p>A<sub style="top: 0.1em;">r </sub><sub style="top: 0.25em;">2 </sub>(p) </p><p>,r </p><p>1</p><p>Then A<sub style="top: 0.15em;">r ,r </sub>(p) is the only such component. In addition, for the only component </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p>14<br>1</p><p></p><ul style="display: flex;"><li style="flex:1">A</li><li style="flex:1">(p), </li></ul><p></p><p>(δ<sub style="top: 0.22em;">0</sub><sup style="top: -0.51em;">− </sup>−ꢀ)r<sub style="top: 0.1em;">1</sub>,(δ <sup style="top: -0.24em;">4 </sup>+ꢀ)r<sub style="top: 0.1em;">2 </sub></p><p>0</p><p>(p), there exist some Γ ⊂ O(4), acting freely on S<sup style="top: -0.36em;">3</sup>, </p><p>1</p><p>which intersects with S </p><p>(δ<sub style="top: 0.21em;">0</sub><sup style="top: -0.24em;">4 </sup>+ꢀ)r<sub style="top: 0.1em;">2 </sub></p><p>with |Γ| ≤ n, and an quasi isometry ψ, with </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>A</p><p>(p) </p><p>(δ<sub style="top: 0.21em;">0</sub><sup style="top: -0.51em;">− </sup><sup style="top: -0.25em;">4 </sup>+ꢀ)r<sub style="top: 0.1em;">1</sub>,(δ <sup style="top: -0.25em;">4 </sup>−ꢀ)r<sub style="top: 0.1em;">2 </sub></p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">CHANG, QING AND YANG </li><li style="flex:1">5</li></ul><p></p><p>(S<sup style="top: -0.41em;">3</sup>/Γ)) </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>⊂ Ψ(C </p><p>δ<sub style="top: 0.21em;">0</sub><sup style="top: -0.51em;">− </sup><sup style="top: -0.25em;">4 </sup>r<sub style="top: 0.1em;">1</sub>,δ<sub style="top: 0.21em;">0</sub><sup style="top: -0.25em;">4 </sup>r<sub style="top: 0.1em;">2 </sub></p><p>14<br>1</p><p>⊂ A </p><p>(p) </p><p>(δ<sub style="top: 0.21em;">0</sub><sup style="top: -0.51em;">− </sup>−ꢀ)r<sub style="top: 0.1em;">1</sub>,(δ <sup style="top: -0.24em;">4 </sup>+ꢀ)r<sub style="top: 0.1em;">2 </sub></p><p>0</p><p>such that for all C <sub style="top: 0.24em;">r,r</sub>(S<sup style="top: -0.36em;">3</sup>/Γ) ⊂ C has <br>(S<sup style="top: -0.36em;">3</sup>/Γ), in the cone coordinates, one </p><p>12</p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>δ<sub style="top: 0.22em;">0</sub><sup style="top: -0.5em;">− </sup><sup style="top: -0.24em;">4 </sup>r<sub style="top: 0.1em;">1</sub>,δ<sub style="top: 0.22em;">0</sub><sup style="top: -0.24em;">4 </sup>r<sub style="top: 0.1em;">2 </sub></p><p>|(Ψ<sup style="top: -0.41em;">∗</sup>(r<sup style="top: -0.41em;">−2</sup>g))<sub style="top: 0.15em;">ij </sub>− δ<sub style="top: 0.15em;">ij</sub>|<sub style="top: 0.17em;">C </sub>≤ ꢀ. </p><p>1,α </p><p>The first step in the proof is to use the Sobolev inequality to show the uniqueness of the connected annulus A<sub style="top: 0.15em;">r ,r </sub>(p). The&nbsp;second step is to establish the growth of volume of geodesic spheres </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>H<sup style="top: -0.41em;">3</sup>(S<sub style="top: 0.15em;">r</sub>(p) ≤ Cr<sup style="top: -0.41em;">3 </sup></p><p>for all r ∈ [r<sub style="top: 0.15em;">1</sub>, <sup style="top: -0.39em;">1</sup><sub style="top: 0.34em;">2 </sub>r<sub style="top: 0.15em;">2</sub>]. Here we rely on the work of Tian and Viaclovsky [TV1] [TV2] where they analyzed the end structure of a Bach-flat, scalar flat manifolds with finite L<sup style="top: -0.36em;">2 </sup>total curvature.&nbsp;The last step is to use the Gromov and Cheeger compactness argument as in the work of Anderson and Cheeger [AC] to get the cone structure of the neck. </p><p>1.3 Bubble tree construction </p><p>In this section we attempt to give a clear picture about what happen at curvature concentration points.&nbsp;We will detect and extract bubbles by locating the centers and scales of curvature concentration. <br>We will assume here that (M<sub style="top: 0.15em;">i</sub>, g<sub style="top: 0.15em;">i</sub>) are Bach flat 4-manifolds with positive scalar curvature Yamabe metrics, vanishing first homology, and finite L<sup style="top: -0.37em;">2 </sup>total curvature. Choose δ small enough according to the ꢀ-estimates and the neck Theorem in the previous section.&nbsp;Suppose that X<sub style="top: 0.15em;">i </sub>⊂ M<sub style="top: 0.15em;">i </sub>contains a geodesic ball of a fixed radius r<sub style="top: 0.15em;">0 </sub>and </p><p>Z</p><p>δ<br>|Rm<sup style="top: -0.41em;">i</sup>|<sup style="top: -0.41em;">2</sup>dv<sup style="top: -0.41em;">i </sup>≤ , </p><p>2</p><p>T<sub style="top: 0.1em;">η</sub><sub style="top: 0.25em;">0 </sub>(∂X<sub style="top: 0.1em;">i</sub>) </p><p>where </p><p>T<sub style="top: 0.15em;">η </sub>(∂X<sub style="top: 0.15em;">i</sub>) = {p ∈ M<sub style="top: 0.15em;">i </sub>: dist(p, ∂X<sub style="top: 0.15em;">i</sub>) &lt; η<sub style="top: 0.15em;">0</sub>}, </p><p>0</p><p>for some fixed positive number 4η<sub style="top: 0.15em;">0 </sub>&lt; r<sub style="top: 0.15em;">0</sub>. Define, for p ∈ X<sub style="top: 0.15em;">i</sub>, </p><p>Z</p><p>δ</p><p>s<sup style="top: -0.42em;">1</sup><sub style="top: 0.24em;">i </sub>(p) = r such that </p><p>|Rm<sup style="top: -0.42em;">i</sup>|<sup style="top: -0.42em;">2</sup>dv<sup style="top: -0.42em;">i </sup>= . </p><p>2</p><p>B<sub style="top: 0.2em;">r</sub><sup style="top: -0.2em;">i </sup>(p) </p><p>Let p<sup style="top: -0.41em;">1</sup><sub style="top: 0.25em;">i </sub>= p such that s<sub style="top: 0.25em;">i</sub><sup style="top: -0.41em;">1</sup>(p) =&nbsp;inf s<sup style="top: -0.41em;">1</sup><sub style="top: 0.25em;">i </sub>(p). </p><p>B<sub style="top: 0.2em;">t</sub><sup style="top: -0.24em;">i</sup><sub style="top: 0.35em;">0 </sub>(p<sub style="top: 0.1em;">i</sub>) </p><p></p><ul style="display: flex;"><li style="flex:1">6</li><li style="flex:1">CONFORMAL GEOMETRY </li></ul><p></p><p>We may assume λ<sup style="top: -0.36em;">1</sup><sub style="top: 0.26em;">i </sub>= s<sub style="top: 0.26em;">i</sub><sup style="top: -0.36em;">1</sup>(p<sup style="top: -0.36em;">1</sup><sub style="top: 0.26em;">i </sub>) → 0, for otherwise there would be no curvature concentration in X<sub style="top: 0.15em;">i</sub>. We&nbsp;then conclude that (M<sub style="top: 0.15em;">i</sub>, (λ<sup style="top: -0.36em;">1</sup><sub style="top: 0.26em;">i </sub>)<sup style="top: -0.36em;">−2</sup>g<sub style="top: 0.15em;">i</sub>, p<sub style="top: 0.26em;">i</sub><sup style="top: -0.36em;">1</sup>) converges to (M<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">1 </sup>, g<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">1 </sup>, p<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">1 </sup>), which is a Bach flat, scalar flat, complete 4-manifold satisfying the Sobolev inequality, having finite L<sup style="top: -0.37em;">2 </sup>total curvature, and one single end. </p><p>Definition 1.3.1.&nbsp;We call a Bach flat, scalar flat, complete 4-manifold with the Sobolev inequality, finite L<sup style="top: -0.36em;">2 </sup>total curvature, and a single ALE end a leaf bubble, while we will call such space with finitely many isolated irreducible orbifold points </p><p>an intermediate bubble. </p><p>Now, we define, for p ∈ X<sub style="top: 0.15em;">i </sub>\ B<sup style="top: -0.36em;">i </sup><sub style="top: 0.12em;">1 </sub>(p<sub style="top: 0.26em;">i</sub><sup style="top: -0.36em;">1</sup>), </p><p>K<sup style="top: -0.2em;">1</sup>λ<sub style="top: 0.23em;">i </sub></p><p>s<sup style="top: -0.41em;">2</sup><sub style="top: 0.24em;">i </sub>(p) = r such that </p><p>Z</p><p>δ<br>|Rm<sup style="top: -0.41em;">i</sup>|<sup style="top: -0.41em;">2</sup>dv<sup style="top: -0.41em;">i </sup>= . </p><p>2</p><p>B<sub style="top: 0.2em;">r</sub><sup style="top: -0.2em;">i </sup>(p)\B<sup style="top: -0.24em;">i </sup></p><p><sub style="top: 0.22em;">1 </sub>(p<sup style="top: -0.24em;">1</sup><sub style="top: 0.23em;">i </sub>) </p><p>i</p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">K</li><li style="flex:1">λ</li></ul><p></p><p>Let </p><p>p<sup style="top: -0.42em;">2</sup><sub style="top: 0.24em;">i </sub>= p </p><p>such that </p><ul style="display: flex;"><li style="flex:1">s<sup style="top: -0.41em;">2</sup><sub style="top: 0.25em;">i </sub>(p) = </li><li style="flex:1">inf </li></ul><p></p><p>K</p><p>s<sup style="top: -0.41em;">2</sup><sub style="top: 0.25em;">i </sub>(p). </p><p>B<sub style="top: 0.2em;">r</sub><sup style="top: -0.2em;">i </sup>(p)\B<sup style="top: -0.24em;">i </sup></p><p><sub style="top: 0.21em;">1 </sub>(p<sup style="top: -0.24em;">1</sup><sub style="top: 0.23em;">i </sub>) </p><p>i</p><p>1</p><p>λ</p><p>Again let λ<sup style="top: -0.36em;">2</sup><sub style="top: 0.26em;">i </sub>= s<sub style="top: 0.26em;">i</sub><sup style="top: -0.36em;">2</sup>(p<sup style="top: -0.36em;">2</sup><sub style="top: 0.26em;">i </sub>) → 0. Otherwise&nbsp;there would be no more curvature concentration. Then </p><p>Lemma 1.3.2. </p><p>λ<sub style="top: 0.26em;">i</sub><sup style="top: -0.36em;">2 </sup>λ<sub style="top: 0.28em;">i</sub><sup style="top: -0.34em;">1 </sup></p><p>dist(p<sup style="top: -0.36em;">1</sup><sub style="top: 0.26em;">i </sub>, p<sup style="top: -0.36em;">2</sup><sub style="top: 0.26em;">i </sub>) </p><p>+</p><p>→ ∞. </p><p>λ<sub style="top: 0.28em;">i</sub><sup style="top: -0.34em;">1 </sup></p><p>There are two possibilities: dist(p<sup style="top: -0.36em;">1</sup><sub style="top: 0.26em;">i </sub>, p<sup style="top: -0.36em;">2</sup><sub style="top: 0.26em;">i </sub>) <br>Case 1. </p><p>Case 2. </p><p>→ ∞ </p><p>λ<sub style="top: 0.27em;">i</sub><sup style="top: -0.35em;">2 </sup></p><p>dist(p<sup style="top: -0.36em;">1</sup><sub style="top: 0.26em;">i </sub>, p<sup style="top: -0.36em;">2</sup><sub style="top: 0.26em;">i </sub>) </p><p>λ<sub style="top: 0.28em;">i</sub><sup style="top: -0.34em;">2 </sup></p><p>≤ M<sup style="top: -0.41em;">1</sup>. </p><p>In case 1, we certainly also have dist(p<sup style="top: -0.37em;">1</sup><sub style="top: 0.26em;">i </sub>, p<sup style="top: -0.37em;">2</sup><sub style="top: 0.26em;">i </sub>) </p><p>→ ∞. </p><p>λ<sub style="top: 0.28em;">i</sub><sup style="top: -0.34em;">1 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">CHANG, QING AND YANG </li><li style="flex:1">7</li></ul><p></p><p>Therefore, in the convergence of the sequence (M<sub style="top: 0.15em;">i</sub>, (λ<sup style="top: -0.36em;">2</sup><sub style="top: 0.26em;">i </sub>)<sup style="top: -0.36em;">−2</sup>g<sub style="top: 0.15em;">i</sub>, p<sub style="top: 0.26em;">i</sub><sup style="top: -0.36em;">2</sup>) the concentration which produces the bubble (M<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">1 </sup>, g<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">1 </sup>) eventually escapes to infinity of M<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">2 </sup>and hence is not visible to the bubble (M<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">2 </sup>, g<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">2 </sup>), likewise, in the converging sequence (M<sub style="top: 0.15em;">i</sub>, (λ<sub style="top: 0.26em;">i</sub><sup style="top: -0.37em;">1</sup>)<sup style="top: -0.37em;">−2</sup>g<sub style="top: 0.15em;">i</sub>, p<sup style="top: -0.37em;">1</sup><sub style="top: 0.26em;">i </sub>) one does not see the concentration which produces (M<sub style="top: 0.24em;">∞</sub><sup style="top: -0.37em;">2 </sup>, g<sub style="top: 0.24em;">∞</sub><sup style="top: -0.37em;">2 </sup>). There are at most finite number of such leaf bubbles. </p><p>Definition 1.3.3. We say two bubbles (M<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">j</sup><sup style="top: 0.1em;">1 </sup>, g<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">j</sup><sup style="top: 0.1em;">1 </sup>) and (M<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">j</sup><sup style="top: 0.1em;">2 </sup>, g<sub style="top: 0.25em;">∞</sub><sup style="top: -0.36em;">j</sup><sup style="top: 0.1em;">2 </sup>) associated with (p<sup style="top: -0.48em;">j</sup><sub style="top: 0.28em;">i</sub><sup style="top: 0.1em;">1 </sup>, λ<sup style="top: -0.48em;">j</sup><sub style="top: 0.28em;">i</sub><sup style="top: 0.1em;">1 </sup>) and (p<sub style="top: 0.28em;">i</sub><sup style="top: -0.48em;">j</sup><sup style="top: 0.1em;">2 </sup>, λ<sup style="top: -0.48em;">j</sup><sub style="top: 0.28em;">i</sub><sup style="top: 0.1em;">2 </sup>) are separable if </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us