
<p></p><ul style="display: flex;"><li style="flex:1">PHYS 445 Lecture 26 - Black-body radiation I </li><li style="flex:1">26 - 1 </li></ul><p>Lecture 26 - Black-body radiation I </p><p><em>What's Important: </em></p><p>··</p><p>number density energy density </p><p><em>Text</em>: Reif </p><p>In our previous discussion of photons, we established that the mean number of photons with energy is </p><p>i</p><p>1</p><p><em>n </em>= </p><p>(26.1) </p><p><em>i</em></p><p><em>e</em><sup style="top: -0.5em;"><em>ß </em></sup>- 1 </p><p><em>i</em></p><p>Here, the questions that we want to address about photons are: </p><p>···</p><p>what is their number density what is their energy density what is their pressure? </p><p><strong>Number density n </strong></p><p>Eq. (26.1) is written in the language of discrete states. The first thing we need to do is replace the sum by an integral over photon momentum states: </p><p>S<sub style="top: 0.25em;">i </sub>® ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em></p><p>Of course, it isn't quite this simple because the density-of-states issue that we introduced before: for every spin state there is one phase space state for every <em>h </em><sup style="top: -0.4167em;">3</sup>, so the proper replacement more like </p><p>S<sub style="top: 0.25em;">i </sub>® (1/<em>h </em><sup style="top: -0.4167em;">3</sup>) ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em>ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>r </em></p><p>The units now work: the left hand side is a number, and so is the right hand side. But this expression ignores spin - it just deals with the states in phase space. For every photon momentum, there are two ways of arranging its polarization (<em>i.e.</em>, the orientation of its electric or magnetic field vectors): </p><p>where the photon momentum vector is perpendicular to the plane. Thus, we have </p><p>S<sub style="top: 0.25em;">i </sub>® (2/<em>h </em><sup style="top: -0.4167em;">3</sup>) ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em>ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>r</em>. </p><p>(26.2) <br>Assuming that our system is spatially uniform, the position integral can be replaced by the volume </p><p>ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>r </em>= <em>V</em>. </p><p>© 2001 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited. </p><p>PHYS 445 Lecture 26 - Black-body radiation I The total number of photons is then <br>26 - 2 </p><p></p><ul style="display: flex;"><li style="flex:1"><em>V</em></li><li style="flex:1"><em>d</em><sup style="top: -0.4167em;">3</sup><em>p </em></li></ul><p><em>N </em>=2 </p><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">(26.3) </li></ul><p></p><p><em>ß</em></p><p><em>h</em><sup style="top: -0.5em;">3 </sup><em>e </em>- 1 </p><p>ò</p><p></p><ul style="display: flex;"><li style="flex:1">This integral is written in terms of energy </li><li style="flex:1">and momentum <em>p</em>; for photons, these </li></ul><p>quantities are related through Einstein's relation (<em>m </em>= 0) </p><p>= <em>pc</em>. </p><p>Dividing <em>N </em>by <em>V </em>gives the integrated number density of photons <em>n</em><sub style="top: 0.25em;">g</sub>, which can be written in an integral form as <br>2</p><p><em>h</em><sup style="top: -0.5em;">3 </sup><em>d </em><sup style="top: -0.4167em;">3</sup><em>p n </em>= </p><p>(26.4) </p><p><em>ßpc </em></p><p>ò</p><p><em>e</em></p><p>- 1 </p><p>or as with </p><p>[<em>number per unit volume between </em><strong>p </strong><em>and </em><strong>p</strong>+d<strong>p</strong>] = <em>n</em><sub style="top: 0.25em;">g</sub>(<strong>p</strong>) <em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em><br>2 <em>d</em><sup style="top: -0.4167em;">3</sup><em>p n </em>(<strong>p</strong>)<em>d</em><sup style="top: -0.5em;">3</sup><em>p </em>= </p><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">(26.5) </li></ul><p></p><p><em>h</em><sup style="top: -0.5em;">3 </sup><em>e</em><sup style="top: -0.5em;"><em>ßpc </em></sup>- 1 </p><p>Let's integrate Eq. (26.4) for an isotropic system, where ò<sub style="top: 0.25em;">angles</sub><em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em>= 4p<em>p </em><sup style="top: -0.4167em;">2</sup><em>dp</em>: </p><p>8p <em>p</em><sup style="top: -0.4167em;">2</sup><em>dp n </em>= </p><p>.</p><p><em>ßpc </em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>h</em><sup style="top: -0.5em;">3 </sup></li><li style="flex:1"><em>e</em></li></ul><p></p><p>- 1 </p><p>ò</p><p>Changing variables to <em>x </em>= <em>ßpc </em>gives </p><p>¥</p><p>8p </p><p><em>x</em><sup style="top: -0.4167em;">2</sup><em>dx n </em>= </p><p>(<em>ßhc</em>)<sup style="top: -0.5em;">3 </sup><sub style="top: 0.3333em;">0 </sub><em>e </em>- 1 </p><p><em>x</em></p><p>ò</p><p>The integral has the form of a Reimann Zeta function, and is </p><p>¥</p><p><em>x</em><sup style="top: -0.4167em;">2</sup><em>dx </em></p><p>=2 (3) =2 · 1.202 </p><p><em>x</em></p><p>ò</p><p><sub style="top: 0.3333em;">0 </sub><em>e </em>- 1 </p><p>Thus, </p><p>3</p><p>æ<em>k T hc </em></p><p>öø</p><p><em>B</em></p><p><em>n </em>=1.202· 16p </p><p>(26.6) </p><p>è</p><p><em>Example </em></p><p>The universe is filled with relic radiation left over from the Big Bang with a temperature of 2.7 K. What is <em>n</em><sub style="top: 0.25em;">g </sub>of this radiation? </p><p>ö<sup style="top: -0.75em;">3 </sup></p><p>ø</p><p>1.38 ´ 10<sup style="top: -0.4167em;">-23 </sup>· 2.7 </p><p>æç</p><p><em>n </em>=1.202· 16p </p><p>6.63 ´ 10<sup style="top: -0.5em;">-34 </sup>· 3.0 ´ 10<sup style="top: -0.5em;">8 </sup></p><p>è</p><p>= 4.0´ 10<sup style="top: -0.5em;">8 </sup>m<sup style="top: -0.5em;">- 3 </sup>=400cm<sup style="top: -0.5em;">- 3 </sup></p><p>© 2001 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited. </p><p></p><ul style="display: flex;"><li style="flex:1">PHYS 445 Lecture 26 - Black-body radiation I </li><li style="flex:1">26 - 3 </li></ul><p></p><p><strong>Energy density u </strong></p><p>We saw that the number of photons per unit volume between <strong>p </strong>and <strong>p</strong>+d<strong>p </strong>is </p><p>2 <em>d</em><sup style="top: -0.4167em;">3</sup><em>p h</em><sup style="top: -0.5em;">3 </sup><em>e</em><sup style="top: -0.5em;"><em>ßpc </em></sup>- 1 <em>n </em>(<strong>p</strong>)<em>d</em><sup style="top: -0.5em;">3</sup><em>p </em>= </p><p>.</p><p>3</p><p>These photons have an energy of <em>pc</em>, giving an energy density <em>u</em><sub style="top: 0.25em;">g</sub>(<strong>p</strong>)<em>d p </em>in this momentum range of </p><p>2 <em>d </em><sup style="top: -0.4167em;">3</sup><em>p h</em><sup style="top: -0.5em;">3 </sup><em>e</em><sup style="top: -0.5em;"><em>ßpc </em></sup>- 1 <em>u </em>(<strong>p</strong>)<em>d</em><sup style="top: -0.5em;">3</sup><em>p </em>=<em>pc </em></p><p>.<br>Taking the integral of this over momentum gives the total energy density <em>u</em><sub style="top: 0.25em;">g </sub>for an isotropic system, </p><p>8p </p><p><em>p</em><sup style="top: -0.4167em;">2</sup><em>dp </em><br>8p<em>c p</em><sup style="top: -0.4167em;">3</sup><em>dp </em></p><p><em>u </em>= <em>pc </em></p><p>=</p><p>.</p><p><em>h</em><sup style="top: -0.5em;">3 </sup><em>e</em><sup style="top: -0.5em;"><em>ßpc </em></sup>- 1 <em>h</em><sup style="top: -0.5em;">3 </sup><em>e</em></p><p>- 1 </p><p><em>ßpc </em></p><p></p><ul style="display: flex;"><li style="flex:1">ò</li><li style="flex:1">ò</li></ul><p></p><p>where ò<sub style="top: 0.25em;">angles</sub><em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em>= 4p<em>p </em><sup style="top: -0.4167em;">2</sup><em>dp </em>as before. Once again changing variables to <em>x </em>= <em>ßpc </em></p><p>4¥ </p><p>4 ¥ </p><p>8p<em>c </em>æ<em>kT x</em><sup style="top: -0.4167em;">3</sup><em>dx </em>æ<em>kT x</em><sup style="top: -0.4167em;">3</sup><em>dx </em></p><p></p><ul style="display: flex;"><li style="flex:1"><sup style="top: -0.8333em;">ö</sup><sub style="top: 0.25em;">ø </sub>ò </li><li style="flex:1"><sub style="top: 0.25em;">ø </sub>ò </li></ul><p></p><p>ö</p><p></p><ul style="display: flex;"><li style="flex:1"><em>u </em>= </li><li style="flex:1">=8p<em>hc </em></li></ul><p></p><p><em>x</em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>h</em><sup style="top: -0.5em;">3 </sup></li><li style="flex:1"><em>c</em></li></ul><p></p><p><sub style="top: 0.3333em;">0 </sub><em>e</em><sup style="top: -0.5em;"><em>x </em></sup>- 1 </p><p><em>hc </em><sub style="top: 0.3333em;">0 </sub><em>e </em>- 1 </p><p></p><ul style="display: flex;"><li style="flex:1">è</li><li style="flex:1">è</li></ul><p></p><p>The integral is equal to </p><p>¥</p><p>4</p><p><em>x</em><sup style="top: -0.4167em;">3</sup><em>dx </em></p><p>p<br>=</p><p>.</p><p><em>x</em></p><p>ò</p><p><sub style="top: 0.3333em;">0 </sub><em>e </em>- 1 15 </p><p>Thus, </p><p>8p (p<em>k</em><sub style="top: 0.25em;"><em>B</em></sub><em>T</em>)<sup style="top: -0.4167em;">4 </sup><em>u </em>= </p><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">(26.7) </li></ul><p></p><p>15 (<em>h c</em>)<sup style="top: -0.5em;">3 </sup><br><em>Example u </em>= </p><p>Find the energy density of photons at room temperature <em>T </em>= 293 K. <br>8p (p· 1.38 ´ 10<sup style="top: -0.4167em;">- 23 </sup>· 293)<sup style="top: -0.4167em;">4 </sup><br>=5.5 ´ 10<sup style="top: -0.5em;">- 6 </sup>J/m<sup style="top: -0.4167em;">3</sup>. <br>15 (6.63 ´ 10<sup style="top: -0.5em;">-34 </sup>· 3.0 ´ 10<sup style="top: -0.5em;">8</sup>)<sup style="top: -0.5em;">3 </sup></p><p><em>Mean energy per photon </em></p><p>From Eqs. (26.6) and (26.7) we can determine the mean energy per photon </p><p>8p (<em>k</em><sub style="top: 0.25em;"><em>B</em></sub><em>T</em>)<sup style="top: -0.4167em;">4 </sup></p><p>5</p><p>·</p><p>4</p><p>15 (<em>h c</em>)<sup style="top: -0.5em;">3 </sup><em>u n</em></p><p>p</p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">=</li></ul><p></p><p><em>k</em><sub style="top: 0.25em;"><em>B</em></sub><em>T </em>=2.7<em>k</em><sub style="top: 0.25em;"><em>B</em></sub><em>T </em></p><p>(26.8) </p><p>(<em>k</em><sub style="top: 0.25em;"><em>B</em></sub><em>T </em>)<sup style="top: -0.4167em;">3 </sup></p><p>1.202· 30 <br>1.202· 16p </p><p>(<em>hc</em>)<sup style="top: -0.5em;">3 </sup></p><p>Notice once again how <em>k</em><sub style="top: 0.25em;">B</sub><em>T </em>sets the energy scale. </p><p>© 2001 by David Boal, Simon Fraser University. All rights reserved; further resale or copying is strictly prohibited. </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages3 Page
-
File Size-