1 Lecture 26

1 Lecture 26

<p></p><ul style="display: flex;"><li style="flex:1">PHYS 445 Lecture 26 - Black-body radiation I </li><li style="flex:1">26 - 1 </li></ul><p>Lecture 26 - Black-body radiation I </p><p><em>What's Important: </em></p><p>··</p><p>number density energy density </p><p><em>Text</em>: Reif </p><p>In our previous discussion of photons, we established that the mean number of photons with energy&nbsp;is </p><p>i</p><p>1</p><p><em>n </em>= </p><p>(26.1) </p><p><em>i</em></p><p><em>e</em><sup style="top: -0.5em;"><em>ß </em></sup>- 1 </p><p><em>i</em></p><p>Here, the questions that we want to address about photons are: </p><p>···</p><p>what is their number density what is their energy density what is their pressure? </p><p><strong>Number density n </strong></p><p>Eq. (26.1) is written in the language of discrete states.&nbsp;The first thing we need to do is replace the sum by an integral over photon momentum states: </p><p>S<sub style="top: 0.25em;">i </sub>® ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em></p><p>Of course, it isn't quite this simple because the density-of-states issue that we introduced before: for every spin state there is one phase space state for every <em>h </em><sup style="top: -0.4167em;">3</sup>, so the proper replacement more like </p><p>S<sub style="top: 0.25em;">i </sub>® (1/<em>h </em><sup style="top: -0.4167em;">3</sup>) ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em>ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>r </em></p><p>The units now work: the left hand side is a number, and so is the right hand side.&nbsp;But this expression ignores spin - it just deals with the states in phase space.&nbsp;For every photon momentum, there are two ways of arranging its polarization (<em>i.e.</em>, the orientation of its electric or magnetic field vectors): </p><p>where the photon momentum vector is perpendicular to the plane.&nbsp;Thus, we have </p><p>S<sub style="top: 0.25em;">i </sub>® (2/<em>h </em><sup style="top: -0.4167em;">3</sup>) ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em>ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>r</em>. </p><p>(26.2) <br>Assuming that our system is spatially uniform, the position integral can be replaced by the volume </p><p>ò<em>d </em><sup style="top: -0.4167em;">3</sup><em>r </em>= <em>V</em>. </p><p>© 2001 by David Boal, Simon Fraser University.&nbsp;All rights reserved; further resale or copying is strictly prohibited. </p><p>PHYS 445 Lecture 26 - Black-body radiation I The total number of photons is then <br>26 - 2 </p><p></p><ul style="display: flex;"><li style="flex:1"><em>V</em></li><li style="flex:1"><em>d</em><sup style="top: -0.4167em;">3</sup><em>p </em></li></ul><p><em>N </em>=2 </p><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">(26.3) </li></ul><p></p><p><em>ß</em></p><p><em>h</em><sup style="top: -0.5em;">3 </sup><em>e </em>- 1 </p><p>ò</p><p></p><ul style="display: flex;"><li style="flex:1">This integral is written in terms of energy </li><li style="flex:1">and momentum <em>p</em>; for photons, these </li></ul><p>quantities are related through Einstein's relation (<em>m </em>= 0) </p><p>= <em>pc</em>. </p><p>Dividing <em>N </em>by <em>V </em>gives the&nbsp;integrated number density of photons <em>n</em><sub style="top: 0.25em;">g</sub>, which can be written in an integral form as <br>2</p><p><em>h</em><sup style="top: -0.5em;">3 </sup><em>d </em><sup style="top: -0.4167em;">3</sup><em>p n </em>= </p><p>(26.4) </p><p><em>ßpc </em></p><p>ò</p><p><em>e</em></p><p>- 1 </p><p>or as with </p><p>[<em>number per unit volume between </em><strong>p </strong><em>and </em><strong>p</strong>+d<strong>p</strong>] = <em>n</em><sub style="top: 0.25em;">g</sub>(<strong>p</strong>) <em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em><br>2 <em>d</em><sup style="top: -0.4167em;">3</sup><em>p n </em>(<strong>p</strong>)<em>d</em><sup style="top: -0.5em;">3</sup><em>p </em>= </p><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">(26.5) </li></ul><p></p><p><em>h</em><sup style="top: -0.5em;">3 </sup><em>e</em><sup style="top: -0.5em;"><em>ßpc </em></sup>- 1 </p><p>Let's integrate Eq. (26.4) for an isotropic system, where ò<sub style="top: 0.25em;">angles</sub><em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em>= 4p<em>p </em><sup style="top: -0.4167em;">2</sup><em>dp</em>: </p><p>8p <em>p</em><sup style="top: -0.4167em;">2</sup><em>dp n </em>= </p><p>.</p><p><em>ßpc </em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>h</em><sup style="top: -0.5em;">3 </sup></li><li style="flex:1"><em>e</em></li></ul><p></p><p>- 1 </p><p>ò</p><p>Changing variables to <em>x </em>= <em>ßpc </em>gives </p><p>¥</p><p>8p </p><p><em>x</em><sup style="top: -0.4167em;">2</sup><em>dx n </em>= </p><p>(<em>ßhc</em>)<sup style="top: -0.5em;">3 </sup><sub style="top: 0.3333em;">0 </sub><em>e </em>- 1 </p><p><em>x</em></p><p>ò</p><p>The integral has the form of a Reimann Zeta function, and is </p><p>¥</p><p><em>x</em><sup style="top: -0.4167em;">2</sup><em>dx </em></p><p>=2 (3)&nbsp;=2 · 1.202 </p><p><em>x</em></p><p>ò</p><p><sub style="top: 0.3333em;">0 </sub><em>e </em>- 1 </p><p>Thus, </p><p>3</p><p>æ<em>k T hc </em></p><p>öø</p><p><em>B</em></p><p><em>n </em>=1.202· 16p </p><p>(26.6) </p><p>è</p><p><em>Example </em></p><p>The universe is filled with relic radiation left over from the Big Bang with a temperature of 2.7 K.&nbsp;What is <em>n</em><sub style="top: 0.25em;">g </sub>of this radiation? </p><p>ö<sup style="top: -0.75em;">3 </sup></p><p>ø</p><p>1.38 ´ 10<sup style="top: -0.4167em;">-23 </sup>· 2.7 </p><p>æç</p><p><em>n </em>=1.202· 16p </p><p>6.63 ´ 10<sup style="top: -0.5em;">-34 </sup>· 3.0 ´ 10<sup style="top: -0.5em;">8 </sup></p><p>è</p><p>= 4.0´ 10<sup style="top: -0.5em;">8 </sup>m<sup style="top: -0.5em;">- 3 </sup>=400cm<sup style="top: -0.5em;">- 3 </sup></p><p>© 2001 by David Boal, Simon Fraser University.&nbsp;All rights reserved; further resale or copying is strictly prohibited. </p><p></p><ul style="display: flex;"><li style="flex:1">PHYS 445 Lecture 26 - Black-body radiation I </li><li style="flex:1">26 - 3 </li></ul><p></p><p><strong>Energy density u </strong></p><p>We saw that the number of photons per unit volume between <strong>p </strong>and <strong>p</strong>+d<strong>p </strong>is </p><p>2 <em>d</em><sup style="top: -0.4167em;">3</sup><em>p h</em><sup style="top: -0.5em;">3 </sup><em>e</em><sup style="top: -0.5em;"><em>ßpc </em></sup>- 1 <em>n </em>(<strong>p</strong>)<em>d</em><sup style="top: -0.5em;">3</sup><em>p </em>= </p><p>.</p><p>3</p><p>These photons have an energy of <em>pc</em>, giving an energy density <em>u</em><sub style="top: 0.25em;">g</sub>(<strong>p</strong>)<em>d p &nbsp;</em>in this momentum range of </p><p>2 <em>d </em><sup style="top: -0.4167em;">3</sup><em>p h</em><sup style="top: -0.5em;">3 </sup><em>e</em><sup style="top: -0.5em;"><em>ßpc </em></sup>- 1 <em>u </em>(<strong>p</strong>)<em>d</em><sup style="top: -0.5em;">3</sup><em>p </em>=<em>pc </em></p><p>.<br>Taking the integral of this over momentum gives the&nbsp;total energy density <em>u</em><sub style="top: 0.25em;">g </sub>for an isotropic system, </p><p>8p </p><p><em>p</em><sup style="top: -0.4167em;">2</sup><em>dp </em><br>8p<em>c p</em><sup style="top: -0.4167em;">3</sup><em>dp </em></p><p><em>u </em>= <em>pc </em></p><p>=</p><p>.</p><p><em>h</em><sup style="top: -0.5em;">3 </sup><em>e</em><sup style="top: -0.5em;"><em>ßpc </em></sup>- 1 <em>h</em><sup style="top: -0.5em;">3 </sup><em>e</em></p><p>- 1 </p><p><em>ßpc </em></p><p></p><ul style="display: flex;"><li style="flex:1">ò</li><li style="flex:1">ò</li></ul><p></p><p>where ò<sub style="top: 0.25em;">angles</sub><em>d </em><sup style="top: -0.4167em;">3</sup><em>p </em>= 4p<em>p </em><sup style="top: -0.4167em;">2</sup><em>dp </em>as before.&nbsp;Once again changing variables to <em>x </em>= <em>ßpc </em></p><p>4¥ </p><p>4 ¥ </p><p>8p<em>c </em>æ<em>kT x</em><sup style="top: -0.4167em;">3</sup><em>dx </em>æ<em>kT x</em><sup style="top: -0.4167em;">3</sup><em>dx </em></p><p></p><ul style="display: flex;"><li style="flex:1"><sup style="top: -0.8333em;">ö</sup><sub style="top: 0.25em;">ø </sub>ò </li><li style="flex:1"><sub style="top: 0.25em;">ø </sub>ò </li></ul><p></p><p>ö</p><p></p><ul style="display: flex;"><li style="flex:1"><em>u </em>= </li><li style="flex:1">=8p<em>hc </em></li></ul><p></p><p><em>x</em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>h</em><sup style="top: -0.5em;">3 </sup></li><li style="flex:1"><em>c</em></li></ul><p></p><p><sub style="top: 0.3333em;">0 </sub><em>e</em><sup style="top: -0.5em;"><em>x </em></sup>- 1 </p><p><em>hc </em><sub style="top: 0.3333em;">0 </sub><em>e </em>- 1 </p><p></p><ul style="display: flex;"><li style="flex:1">è</li><li style="flex:1">è</li></ul><p></p><p>The integral is equal to </p><p>¥</p><p>4</p><p><em>x</em><sup style="top: -0.4167em;">3</sup><em>dx </em></p><p>p<br>=</p><p>.</p><p><em>x</em></p><p>ò</p><p><sub style="top: 0.3333em;">0 </sub><em>e </em>- 1 15 </p><p>Thus, </p><p>8p (p<em>k</em><sub style="top: 0.25em;"><em>B</em></sub><em>T</em>)<sup style="top: -0.4167em;">4 </sup><em>u </em>= </p><p></p><ul style="display: flex;"><li style="flex:1">.</li><li style="flex:1">(26.7) </li></ul><p></p><p>15 (<em>h c</em>)<sup style="top: -0.5em;">3 </sup><br><em>Example u </em>= </p><p>Find the energy density of photons at room temperature <em>T </em>= 293 K. <br>8p (p· 1.38 ´ 10<sup style="top: -0.4167em;">- 23 </sup>· 293)<sup style="top: -0.4167em;">4 </sup><br>=5.5 ´ 10<sup style="top: -0.5em;">- 6 </sup>J/m<sup style="top: -0.4167em;">3</sup>. <br>15 (6.63 ´ 10<sup style="top: -0.5em;">-34 </sup>· 3.0 ´ 10<sup style="top: -0.5em;">8</sup>)<sup style="top: -0.5em;">3 </sup></p><p><em>Mean energy per photon </em></p><p>From Eqs. (26.6) and (26.7) we can determine the mean energy per photon </p><p>8p (<em>k</em><sub style="top: 0.25em;"><em>B</em></sub><em>T</em>)<sup style="top: -0.4167em;">4 </sup></p><p>5</p><p>·</p><p>4</p><p>15 (<em>h c</em>)<sup style="top: -0.5em;">3 </sup><em>u n</em></p><p>p</p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">=</li></ul><p></p><p><em>k</em><sub style="top: 0.25em;"><em>B</em></sub><em>T </em>=2.7<em>k</em><sub style="top: 0.25em;"><em>B</em></sub><em>T </em></p><p>(26.8) </p><p>(<em>k</em><sub style="top: 0.25em;"><em>B</em></sub><em>T </em>)<sup style="top: -0.4167em;">3 </sup></p><p>1.202· 30 <br>1.202· 16p </p><p>(<em>hc</em>)<sup style="top: -0.5em;">3 </sup></p><p>Notice once again how <em>k</em><sub style="top: 0.25em;">B</sub><em>T </em>sets the energy scale. </p><p>© 2001 by David Boal, Simon Fraser University.&nbsp;All rights reserved; further resale or copying is strictly prohibited. </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us