Part I: Graph Drawing – an Introduction

Part I: Graph Drawing – an Introduction

Part I: Graph Drawing { An Introduction Alexander Wolff Lehrstuhl fur¨ Informatik I Universit¨at Wurzburg¨ Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Part I: Graph Drawing { An Introduction Alexander Wolff Lehrstuhl fur¨ Informatik I Universit¨at Wurzburg¨ Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Part I: Graph Drawing { An Introduction Alexander Wolff Lehrstuhl fur¨ Informatik I Universit¨at Wurzburg¨ BandyopadhyayChakrabortyGovindarajanKrishn enduMukhopadhyayaMukhopadhyayVenkateshx Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Part I: Graph Drawing { An Introduction Alexander Wolff Lehrstuhl fur¨ Informatik I Universit¨at Wurzburg¨ BandyopadhyayChakrabortyGovindarajanKrishn enduMukhopadhyayaMukhopadhyayVenkateshx WurzburgG¨ ¨ottingenSch¨obelKarlsruheSaarbruck¨ enGoerikHoeferKaiserslauternFrankfurtM¨ohring Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Part I: Graph Drawing { An Introduction Alexander Wolff Lehrstuhl fur¨ Informatik I Universit¨at Wurzburg¨ BandyopadhyayChakrabortyGovindarajanKrishn enduMukhopadhyayaMukhopadhyayVenkateshx WurzburgG¨ ¨ottingenSch¨obelKarlsruheSaarbruck¨ enGoerikHoeferKaiserslauternFrankfurtM¨ohring Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Wurzburg???¨ pronounce: [Vurtsburk]¨ Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Wurzburg???¨ pronounce: [Vurtsburk]¨ . baroque architecture! Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Wurzburg???¨ pronounce: [Vurtsburk]¨ . good beer! . baroque architecture! Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Wurzburg???¨ pronounce: [Vurtsburk]¨ . good beer! . Franconian wines! . baroque architecture! Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Location Eindhoven 2011 Stiˇr´ınˇ (Prague) 1999 Karlsruhe 2006 Passau 1995 Vienna 200? Konstanz 2010 Bordeaux 2013 Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Location Eindhoven 2011 ˇ Wurzburg¨ 2014 Stiˇr´ın (Prague) 1999 Karlsruhe 2006 Passau 1995 Vienna 200? Konstanz 2010 Bordeaux 2013 Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Location From Frankfurt Airport: 90 min by train Eindhoven 2011 Frankfurt ˇ Wurzburg¨ 2014 Stiˇr´ın (Prague) 1999 Karlsruhe 2006 Passau 1995 Vienna 200? Konstanz 2010 Bordeaux 2013 Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Location From Frankfurt Airport: 90 min by train From Munich Airport: Eindhoven 3 hrs by train 2011 Frankfurt ˇ Wurzburg¨ 2014 Stiˇr´ın (Prague) 1999 Karlsruhe 2006 Passau 1995 Munich Vienna 200? Konstanz 2010 Bordeaux 2013 Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Table of Contents Reduction of Network Visualization to its algorithmic core problems Today, here: Models, problems, few algorithms, and even fewer proofs Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Table of Contents Reduction of Network Visualization to its algorithmic core problems Today, here: Models, problems, few algorithms, and even fewer proofs Part I Introduction: Notation, “Definition", Examples Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Graph Drawing Exciting young research direction Interesting mixture of combinatorics, geometry, algorithms International Symposium on Graph Drawing 2012: Redmond, WA, U.S.A. { 20th anniversary! 2013: Bordeaux, France 2014: Wurzburg,¨ Germany 2015: Northridge near L.A., U.S.A. 2016: Athens, Greece Dagstuhl seminars roughly every two years Bertinoro workshops every year Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Literature Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Graph Representations What is a graph? Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Graph Representations What is a graph? Tuple G = (V , E) Vertex set V = fv1, ::: , vng Edge set E = fe1, ::: , emg Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Graph Representations What is a graph? Tuple G = (V , E) Vertex set V = fv1, ::: , vng Edge set E = fe1, ::: , emg Representation? Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Graph Representations What is a graph? Tuple G = (V , E) Vertex set V = fv1, ::: , vng Edge set E = fe1, ::: , emg Representation? V = fv1, v2, v3, v4, v5, v6, v7, v8, v9, v10g Set notation E = ffv1, v2g, fv1, v8g, fv2, v3g, fv3, v5g, fv3, v9g, fv3, v10g, fv4, v5g, fv4, v6g, fv4, v9g, fv5, v8g, fv6, v8g, fv6, v9g, fv7, v8g, fv7, v9g, fv8, v10g, fv9, v10gg Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Graph Representations What is a graph? Tuple G = (V , E) Vertex set V = fv1, ::: , vng Edge set E = fe1, ::: , emg Representation? v1 : v2, v8 v2 : v1, v3 Set notation v3 : v2, v5, v9, v10 v4 : v5, v6, v9 Adjacency lists v5 : v3, v4, v8 v6 : v4, v8, v9 v7 : v8, v9 v8 : v1, v5, v6, v7, v9, v10 v9 : v3, v4, v6, v7, v8, v10 v10 : v3, v8, v9 Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Graph Representations What is a graph? Tuple G = (V , E) Vertex set V = fv1, ::: , vng Edge set E = fe1, ::: , emg Representation? 0 0 1 0 0 0 0 0 1 0 0 1 B 1 0 1 0 0 0 0 0 0 0 C Set notation B C B 0 1 0 0 1 0 0 0 1 1 C B C B 0 0 0 0 1 1 0 0 1 0 C Adjacency lists B C B 0 0 1 1 0 0 0 1 0 0 C B C B 0 0 0 1 0 0 0 1 1 0 C Adjacency matrix B C B 0 0 0 0 0 0 0 1 1 0 C B C B 1 0 0 0 1 1 1 0 1 1 C @ 0 0 1 1 0 1 1 1 0 1 A 0 0 1 0 0 0 0 1 1 0 Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Graph Representations What is a graph? Tuple G = (V , E) Vertex set V = fv1, ::: , vng Edge set E = fe1, ::: , emg Representation? Set notation Adjacency lists Adjacency matrix Drawing Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Graph Representations What is a graph? Tuple G = (V , E) Vertex set V = fv1, ::: , vng Edge set E = fe1, ::: , emg Representation? Set notation Adjacency lists Adjacency matrix Drawing Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Graph Representations v : v , v V = fv1, v2, v3, v4, v5, v6, v7, v8, v9, v10g 1 2 8 E = ffv , v g, fv , v g, fv , v g, fv , v g, fv , v g, v2 : v1, v3 1 2 1 8 2 3 3 5 3 9 v : v , v , v , v fv3, v10g, fv4, v5g, fv4, v6g, fv4, v9g, fv5, v8g, 3 2 5 9 10 fv , v g, fv , v g, fv , v g, fv , v g, fv , v g, v4 : v5, v6, v9 6 8 6 9 7 8 7 9 8 10 v : v , v , v fv9, v10gg 5 3 4 8 v6 : v4, v8, v9 v7 : v8, v9 v8 : v1, v5, v6, v7, v9, v10 v9 : v3, v4, v6, v7, v8, v10 v10 : v3, v8, v9 0 0 1 0 0 0 0 0 1 0 0 1 B 1 0 1 0 0 0 0 0 0 0 C B C B 0 1 0 0 1 0 0 0 1 1 C B C B 0 0 0 0 1 1 0 0 1 0 C B C B 0 0 1 1 0 0 0 1 0 0 C B C B 0 0 0 1 0 0 0 1 1 0 C B C B 0 0 0 0 0 0 0 1 1 0 C B C B 1 0 0 0 1 1 1 0 1 1 C @ 0 0 1 1 0 1 1 1 0 1 A 0 0 1 0 0 0 0 1 1 0 Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Why Drawing Graphs? Graphs are mathematical representations of networks. Networks occur in real life in a wide variety of places: Abstract Networks Physical Networks social n. traffic n. communication n. street n. phylogenetic n. supply n. regulatory n. computer n. metabolic n. integrated circuits class diagrams (UML) ::: ::: Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Why Drawing Graphs? Graphs are mathematical representations of networks. Networks occur in real life in a wide variety of places: Without suitable visualization we (as humans) can hardly understand networks. Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Why Drawing Graphs? Graphs are mathematical representations of networks. Networks occur in real life in a wide variety of places: Without suitable visualization we (as humans) can hardly understand networks. Visualization needed for { communicating known networks { exploring new networks Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Why Drawing Graphs? Graphs are mathematical representations of networks. Networks occur in real life in a wide variety of places: Without suitable visualization we (as humans) can hardly understand networks. Visualization needed for { communicating known networks { exploring new networks GD is about designing algorithms that draw graphs| as \nicely" as possible Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Examples A Small Slide SHow Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Traffic Networks { US American Highway System Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Traffic Networks { Continental Airline Flights Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Traffic Networks { The London Tube Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Traffic Networks { The London Tube Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Traffic Networks { The London Tube Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Social Networks { Barrapunto Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Soziale Netze { Terrorist Cell Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Soziale Netze { Shareholding of German Companies Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at Wurzburg¨ Social Networks { Souvereign Wealth Fund Deals Alexander Wolff · Lehrstuhl fur¨ Informatik I · Universit¨at

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    394 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us