Osculating Orbit Elements and the Perturbed Kepler Problem

Osculating Orbit Elements and the Perturbed Kepler Problem

Osculating orbit elements and the perturbed Kepler problem Gmr a = 3 + f(r, v,t) Same − r x & v Define: r := rn ,r:= p/(1 + e cos f) ,p= a(1 e2) − osculating orbit he sin f h v := n + λ ,h:= Gmp p r n := cos ⌦cos(! + f) cos ◆ sinp ⌦sin(! + f) e − X +⇥ sin⌦cos(! + f) + cos ◆ cos ⌦sin(! + f⇤) eY actual orbit +sin⇥ ◆ sin(! + f) eZ ⇤ λ := cos ⌦sin(! + f) cos ◆ sin⌦cos(! + f) e − − X new osculating + sin ⌦sin(! + f) + cos ◆ cos ⌦cos(! + f) e orbit ⇥ − ⇤ Y +sin⇥ ◆ cos(! + f) eZ ⇤ hˆ := n λ =sin◆ sin ⌦ e sin ◆ cos ⌦ e + cos ◆ e ⇥ X − Y Z e, a, ω, Ω, i, T may be functions of time Perturbed Kepler problem Gmr a = + f(r, v,t) − r3 dh h = r v = = r f ⇥ ) dt ⇥ v h dA A = ⇥ n = Gm = f h + v (r f) Gm − ) dt ⇥ ⇥ ⇥ Decompose: f = n + λ + hˆ R S W dh = r λ + r hˆ dt − W S dA Gm =2h n h + rr˙ λ rr˙ hˆ. dt S − R S − W Example: h˙ = r S d (h cos ◆)=h˙ e dt · Z d◆ h˙ cos ◆ h sin ◆ = r cos(! + f)sin◆ + r cos ◆ − dt − W S Perturbed Kepler problem “Lagrange planetary equations” dp p3 1 =2 , dt rGm 1+e cos f S de p 2 cos f + e(1 + cos2 f) = sin f + , dt Gm R 1+e cos f S r d◆ p cos(! + f) = , dt Gm 1+e cos f W r d⌦ p sin(! + f) sin ◆ = , dt Gm 1+e cos f W r d! 1 p 2+e cos f sin(! + f) = cos f + sin f e cot ◆ dt e Gm − R 1+e cos f S− 1+e cos f W r An alternative pericenter angle: $ := ! +⌦cos ◆ d$ 1 p 2+e cos f = cos f + sin f dt e Gm − R 1+e cos f S r Perturbed Kepler problem Comments: § these six 1st-order ODEs are exactly equivalent to the original three 2nd-order ODEs § if f = 0, the orbit elements are constants § if f << Gm/r2, use perturbation theory § yields both periodic and secular changes in orbit elements § can convert from d/dt to d/df using df df d! d⌦ = + cos ◆ dt dt − dt dt ✓ ◆Kepler ✓ ◆ Drop if working to 1st order Perturbed Kepler problem Worked example: perturbations by a third body 3 r12 r13 a1 = Gm2 3 Gm3 3 , − r12 − r13 r12 r23 a2 =+Gm1 3 Gm3 3 r12 − r23 r r13 Gmr Gm r 23 a = 3 n 3(n N)N + O(Gm r2/R4) r3 − R3 − · 3 h i R := r ,N:= r / r ,m:= m + m | 23| 23 | 23| 1 2 Gm3r 2 := f n = 1 3(n N) , r=r12 3 2 R · − R − · 1 Gm3r ⇥ ⇤ := f λ =3 (n N)(λ N), S · R3 · · Gm r := f hˆ =3 3 (n N)(hˆ N) W · R3 · · Put third body on a circular orbit dF G(m + m3) df N = eX cos F + eY sin F, = 3 dt r R ⌧ dt Perturbed Kepler problem Worked example: perturbations by a third body Integrate over f from 0 to 2π holding F fixed, then average over F from 0 to 2π: ∆a =0 h i 15⇡ m a 3 ∆e = 3 e(1 e2)1/2 sin2 ◆ sin ! cos ! h i 2 m R − ✓ ◆ 3 3⇡ m3 a 2 1/2 2 2 2 2 ∆! = (1 e )− 5 cos ◆ sin ! +(1 e )(5 cos ! 3) h i 2 m R − − − ✓ ◆ 3 h i 15⇡ m3 a 2 2 1/2 ∆◆ = e (1 e )− sin ◆ cos ◆ sin ! cos ! h i − 2 m R − ✓ ◆ 3 3⇡ m3 a 2 1/2 2 2 2 ⌦ = (1 e )− (1 5e cos ! +4e ) cos ◆ h i − 2 m R − − ✓ ◆ Also: 3⇡ m a 3 ∆$ = 3 (1 e2)1/2 1+sin2 ◆(1 5sin2 !) h i 2 m R − − ✓ ◆ h i Perturbed Kepler problem Worked example: perturbations by a third body Case 1: coplanar 3rd body and Mercury’s perihelion (i = 0) 3⇡ m a 3 ∆$ = 3 (1 e2)1/2 h i 2 m R − ✓ ◆ For Jupiter: d$/dt = 154 as per century (153.6) For Earth d$/dt = 62 as per century (90) Mercury’s Perihelion: Trouble to Triumph • 1687 Newtonian triumph 575 “ • 1859 Leverrier’s conundrum per century • 1900 A turn-of-the century crisis Planet Advance Venus 277.8 Earth 90.0 Mars 2.5 Jupiter 153.6 Saturn 7.3 Total 531.2 Discrepancy 42.9 Modern measured value 42.98 0.001 General relativity prediction± 42.98 Perturbed Kepler problem Worked example: perturbations by a third body Case 2: the Kozai-Lidov mechanism ∆a =0 h i 15⇡ m a 3 ∆e = 3 e(1 e2)1/2 sin2 ◆ sin ! cos ! h i 2 m R − ✓ ◆ 3 3⇡ m3 a 2 1/2 2 2 2 2 ∆! = (1 e )− 5 cos ◆ sin ! +(1 e )(5 cos ! 3) h i 2 m R − − − ✓ ◆ 3 h i 15⇡ m3 a 2 2 1/2 ∆◆ = e (1 e )− sin ◆ cos ◆ sin ! cos ! Stationary point: h i − 2 m R − ✓ ◆ ⇡ 3⇡ ! = or c 2 2 A conserved quantity: 3 e 1 e2 = cos2 ◆ cos ◆ ∆e +sin◆ ∆◆ =0 − c 5 c 1 e2 h i h i − = 1 e2 cos ◆ =constant LZ ! ) − p Perturbed Kepler problem Worked example: perturbations by a third body Case 2: the Kozai-Lidov mechanism Eccentricity Inclination Pericenter Incorporating post-Newtonian effects in N-body dynamics Capture by BH Merritt, Alexander, Mikkola & Will, PRD 84, 044024 (2011) Animations courtesy David Merritt Perturbed Kepler problem Worked example: body with a quadrupole moment Gmr 3 GmR2 a = J 5(e n)2 1 n 2(e n)e , r3 − 2 2 r4 · − − · n⇥ ⇤ o ∆a =0, ∆e =0, ∆◆ =0 2 R 5 2 -7 ∆! =6⇡J 1 sin ◆ For Mercury (J2 = 2.2 X 10 ) 2 p − 4 ✓ ◆ ✓ ◆ d$ R 2 =0.03 as/century ⌦ = 3⇡J cos ◆ dt − 2 p ✓ ◆ -3 For Earth satellites (J2 = 1.08 X 10 ) d⌦ R 7/2 = 3639 cos ◆ deg/yr dt − a ✓ ◆ § LAGEOS (a=1.93 R, i = 109o.8): 120 deg/yr ! § Sun synchronous: a= 1.5 R, i = 65.9 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us