13.3 Arc Length

13.3 Arc Length

13.3 Arc Length Review: curve in space: rt f t i g t j h t k Tangent vector: r'(t0 ) f ' t i g ' t j h ' t k Tangent line at t t0: s r( t 0) s r '( t 0 ) Velocity: v(t ) r '( t ) speed = | v ( t ) | Acceleration a(t ) v '( t ) r ''( t ) 1 Projectile motion: r(t ) gt2 j v t r initial velocity vr , initial position 2 00 00 g 32ft gravitational constant sec2 Initial speed |v0 | , initial height h, launching angle : 1 2 r(t ) v00cos t , h v sin t gt 2 Recall the length of a curve in the plane: b curve as a graph y f x: length from t a to t b 1 [f '(x)]2 dx a b curve in parametric form : x f t and y g t : length [f '(t)]22 [ g '(t)] dt a A curve in 3-space : r t f t, g t , h t b Length or Arc Length [f '(t)]2 [ g '(t)] 2 [ h '(t)] 2 dt a b Length |r '(t ) | dt a Example 1: A line from a to b : r()()tt a b a , 0t 1 1 1 length rt dt b a dt b a = distance from a to b 0 0 Example 2: 2 2 2 Compute the length (circumference) of circle: ()()x x00 y y r parametric description: x x00 rcos( t ), y y rsin( t ) 0 t 2 2 2 2 length = rt dt r2sin 2 ( t ) r 2 cos 2 ( t ) dt rdt2 r 0 0 0 Problem : A drunken bee travels along the path r(tt ) cos(2 ),sin(2 t), t for 10 seconds. It then travels at constant speed in a straight line for 10 more seconds. How far did the bee travel? velocity: vr(t ) '( t ) 2sin(2 t ),2cos(2 t),1 Speed = | v(t ) | 9 3 10 distance traveled along the helix: |r'(t ) | dt 30 0 At time t0 10, it travels along the tangent line tangent line: u(s ) r( t00 ) s v ( t ) 20 20 length = |u'(s) | ds |v(t ) | ds 0 3 (20 10) 30 10 10 Total distance traveled: 60 ft Arc length function describes distance from a beginning point ta : t ds s( t ) r u du Notice: |r '(t ) | a dt rt gives position on the curve as a function of time its more natural to look at the odometer or the mile markers to tell where you are after you have traveled a certain distance s we would like to have ts as a function of so that we could reparametrize in terms of s. Using the arc length function s s t we can find t as a function of s t t s giving us rr t s or just s Example: Parametrize the following curve by arc length: rtt 3sin(t22 ) i 3cos( ) k r't 6 t cos( t22 ) i 6 t sin( t ) k 2 |r 't | 36 t2 cos 2 ( t 2 ) 36 t 2 sin( t 2 ) 36tt 6 t s s s( t ) 6 udu 3ut22 |ut 3 Solve for t : t= u0 3 0 ss Plug into r(t ) : r( t ( s )) r ( s/ 3) 3sin( )ik 3cos( ) 33 ss Arc length parametrization: r(s ) 3sin( ) i 3cos( ) k 33bb Notice: |r '(s ) | 1 length from s a to s b: r s ds 1 ds b a aa tt is an arc length parameter if |r '( ) | 1 ! 13.4 Curvature The curvature of a curve r(t ) measures the amount the tangent vector bends. Q curvature at PQ> curvature at P r '(t ) Tangent vector r '(t ) Unit tangent vector T ( r '(s ) ! ) |r '(t ) | Curvature - the magnitude of the rate of change of the unit tangent vector T with respect to the arc length parameter s. dT dTr d d Ts r s ds ds ds ds T r s if s is the arc length parameter Examples: a) The curvature of a straight line: r()t r0 + t v r'()t v what is the arc length parametrization of the line: v v r(s) r + s since then |r' (s) | 1 0 ||v ||v dT 2 r s 0 ( if not arc lenght: r(t ) r+0 t v , then r''( t ) 2 t v ) ds b) The curvature of a circle of radius r: r(t ) r cos( t ), r sin( t ) r '(t ) r sin( t ), r cos( t ) t r 'tr hence s r u du rt or t r/ s 0 ss ss arc length parametrization: r(s) rr cos( ), sin( ) Tr'(s) sin( ),cos( ) rr rr dT 11 s s dT 11 T' cos( ), sin( ) ds r r r r ds r2 r small radius means large curvature! It is usually too difficult to parametrize a curve by arc length. Express curvature in terms of a general parameter t : t ds Recall s( t ) r u du hence: |r '(t ) | a dt dT dT dt dT Tt Tt dt ds ds dt ds rt rt dt xy22 Compute the curvature of an ellipse: 1 Example: ab22 r(t ) a cos( t ),bsin( t ) r '(t ) a sin( t ),bcos( t ) |r'(t ) | a2 sin 2 ( t ) b 2 cos 2 ( t ) asin( t ),bcos( t ) ab22cos( t ), ba sin( t ) T(t ) T'(t ) (a lengthy computation…) a2sin 2 ( t ) b 2 cos 2 ( t ) (a2 sin 2 ( t ) b 2 cos 2 ( t )) 3/2 ab Tt ab | T'(t ) | a2sin 2 ( t ) b 2 cos 2 ( t ) rt (a2 sin 2 ( t ) b 2 cos 2 ( t )) 3/2 Sometimes it is easier to use another formula: rrtt 3 rt Why is this true? r '(t ) ds Recall: Tr and | '(t ) | |r '(t ) | dt Tt d ds d2 s ds ds and rT''(t ) TT ' Hence: r'(tt ) | r '( ) | T T rt 2 dt dt dt dt dt 2 ds d2 s ds ds ds ds TT ' TT ' rtt r T 2 T T' dt dt dt dt dt dt but TTTTTTTT 1 implies ' ' 2 ' 0 i.e., T is perpendicular to T' This implies |TTTT ' | | || ' | sin( ) |T ' | | r'| 2 2 ds ds 3 Put together, we get: |rtt r | | T T' | | r'| = | r'| dt dt Example: Ellipse revisited: r(t ) a cos( t ),bsin( t ) or r(t ) a cos( t ),bsin( t ),0 r '(t ) a sin( t ),bcos( t ),0 r ''(t ) a cos( t ), bsin( t ),0 i j k rrt t asin( t ) b cos( t ) 0 (ab sin22 ( t ) ab cos ( t ))k = ab k acos( t ) b sin( t ) 0 |퐫′ 푡 × 퐫″ 푡 | 푎푏 휅 = = |퐫′ 푡 |3 푎2sin2(푡) + 푏2푐표푠2(푡) 3 2 Example: Curvature of the (elliptical) helix: r(t ) a cos( t ),bsin(t), c t r '(t ) a sin( t ),bcos( t ),c r ''(t ) a cos( t ), bsin(t),0 i j k rrt t asin( t ) b cos( t ) c (0bc sin( t ))i ( ac cos( t ) 0) j ( ab sin22 ( t ) ab cos ( t )) k acos( t ) b sin( t ) 0 bcsin( t )i ac cos( t ) j ab k rrt t b2 c 2sin 2 ( t ) a 2 c 2 cos 2 ( t ) a 2 b 2 |r'(t ) | a2 sin 2 ( t ) b 2 cos 2 ( t ) c 2 |퐫′ 푡 × 퐫″ 푡 | b2 c 2sin 2 ( t ) a 2 c 2 cos 2 ( t ) a 2 b 2 휅 = ′ 3 3/2 |퐫 푡 | a2sin 2 ( t ) b 2 cos 2 ( t ) c 2 2 2 2 2 22 a Circular helix: ba , a c a a a c a 3/2 3/2 22 constant! a22 c a22 c a c rrtt Appplication: Curvature of a plane curve: 3 rt r(t ) x ( t ), y(t),0 r'(t ) x '( t ), y'(t),0 i j k rrt t x' y ' 0 (x ' y '' x '' y ')k xy'' '' 0 |x ' y '' x '' y ' | 3/2 (xy ')22 ( ') Summary: b Length of a curve |r '(t ) | dt a t ds Arc length function s( t ) r u du |r '(t ) | a dt Arc length parametrization rr(ss ) with | '( ) | 1 r '(t ) Unit tangent vector Tr'(s) |r '(t ) | dT Tt rrtt Curvature: r s 3 ds rt rt.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us