Magnetic Circuits Magnetic Circuit Definitions

Magnetic Circuits Magnetic Circuit Definitions

ELG2336: Magnetic Circuits Magnetic Circuit Definitions • Magnetomotive Force – The “driving force” that causes a magnetic field – Symbol, F – Definition, F = NI – Units, Ampere-turns, (A-t) 2 Magnetic Circuit Definitions • Magnetic Field Intensity – mmf gradient, or mmf per unit length – Symbol, H – Definition, H = F/l = NI/l – Units, (A-t/m) 3 Magnetic Circuit Definitions • Flux Density – he concentration of the lines of force in a magnetic circuit – Symbol, B – Definition, B = Φ/A – Units, (Wb/m2), or T (Tesla) 4 Magnetic Circuit Definitions • Reluctance – The measure of “opposition” the magnetic circuit offers to the flux – The analog of Resistance in an electrical circuit – Symbol, R – Definition, R = F/Φ – Units, (A-t/Wb) 5 Magnetic Circuit Definitions • Permeability – Relates flux density and field intensity – Symbol, μ – Definition, μ = B/H – Units, (Wb/A-t-m) ECE 441 6 Magnetic Circuit Definitions • Permeability of free space (air) – Symbol, μ0 -7 – μ0 = 4πx10 Wb/A-t-m 7 Definitions Combined (Unit is Weber (Wb)) = Magnetic Flux Crossing a Surface of Area ‘A’ in m2. B (Unit is Tesla (T)) = Magnetic Flux Density = /A B H (Unit is Amp/m) = Magnetic Field Intensity = = permeability = o r -7 o = 4*10 H/m (H Henry) = Permeability of free space (air) r = Relative Permeability r >> 1 for Magnetic Material 8 Magnetic Circuit 9 Air Gaps, Fringing, and Laminated Cores • Circuits with air gaps may cause fringing • Correction – Increase each cross-sectional dimension of gap by the size of the gap • Many applications use laminated cores • Effective area is not as large as actual area 11 18_18.jpg Electric and Magnetic Circuits 13 Magnetization Circuits with Air-Gap lc w i lg N lc lg Ni d c A g c c g Ag c g Ni Hclc H glg Ac Ag wd (Neglecting fringing) 14 Inductance(L) Definition: Flux Linkage() per unit of current(I) in a magnetic circuit N L I I I N NI N2 L Thus inductance depends on the geometry of construction 15 Series Magnetic Circuits • Solve a circuit where is known – First compute B using /A – Determine H for each magnetic section from B-H curves – Compute NI using Ampere’s circuital law – Use computed NI to determine coil current or turns as required 16 Series-Parallel Magnetic Circuits • Use sum of fluxes principle and Ampere’s Law • Find B and H for each section • Then use Ampere’s Law 17 Structure of Transformer 18_35.jpg Electromechanical Energy Conversion Reading • Example 18.2 • Example 18.3 • Example 18.3 • Example 18.7 21 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us