
<p><strong>Gears and Gearing </strong></p><p><strong>Part 1 </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Types of Gears </strong></li><li style="flex:1"><strong>Types of Gears </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Spur </li><li style="flex:1">Helical </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Bevel </li><li style="flex:1">Worm </li></ul><p></p><p><strong>Nomenclature of Spur-Gear Teeth </strong></p><p>Fig. 13–5 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Rack </strong></p><p> A <em>rack </em>is a spur gear with an pitch diameter of infinity. The sides of the teeth are straight lines making an angle to the line </p><p>of centers equal to the pressure angle. </p><p>Fig. 13–13 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Tooth Size, Diameter, Number of Teeth </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Tooth Sizes in General Industrial Use </strong></p><p>Table 13–2 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>How an Involute Gear Profile is constructed </strong></p><p>A<sub style="top: 0.37em;">1</sub>B<sub style="top: 0.37em;">1</sub>=A<sub style="top: 0.37em;">1</sub>A<sub style="top: 0.37em;">0</sub>, A<sub style="top: 0.37em;">2</sub>B<sub style="top: 0.37em;">2</sub>=2 A<sub style="top: 0.37em;">1</sub>A<sub style="top: 0.37em;">0 </sub>, etc Pressure Angle Φ has the values of 20° or 25 ° 14.5 ° has also been used. </p><p>Gear profile is constructed from the base circle. Then additional clearance are given. </p><p><strong>Relation of Base Circle to Pressure Angle </strong></p><p>Fig. 13–10 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Standardized Tooth Systems: AGMA Standard </strong></p><p> Common pressure angles f : 20º and 25º Older pressure angle: 14 ½º </p><p> Common face width: </p><p>3<em>p </em> <em>F </em> 5<em>p </em></p><p></p><p><em>P p </em> </p><p>3 </p><p><em>P</em></p><p>5 </p><p><em>P</em><br> <em>F </em> </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Gear Sources </strong></p><p>• Boston Gear </p><p>• Martin Sprocket </p><p>• W. M. Berg • Stock Drive Products </p><p>…. </p><p>Numerous others </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Conjugate Action </strong></p><p> When surfaces roll/slide against each other and </p><p><strong>produce constant angular velocity ratio, </strong>they are said </p><p>to have <strong>conjugate action</strong><em>. </em></p><p> Can be accomplished if </p><p>instant center of velocity </p><p>between the two bodies remains stationary between the grounded instant centers. </p><p>Fig. 13–6 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Fundamental Law of Gearing: </strong></p><p><strong>The common normal of the tooth </strong></p><p><strong>profiles at all points within the mesh </strong></p><p><strong>must always pass through a fixed point on the line of the centers called pitch point. Then the gearset’s velocity ratio will be constant through the mesh and </strong></p><p><strong>be equal to the ratio of the gear radii. </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Conjugate Action: Fundamental Law of Gearing </strong></p><p> Forces are transmitted on <em>line of action </em>which is normal to the contacting surfaces. </p><p> Velocity. <strong>V</strong><sub style="top: 0.45em;"><strong>P </strong></sub>of both gears is the </p><p><strong>V</strong><sub style="top: 0.37em;"><strong>P </strong></sub></p><p>same at point <em>P , </em>the <em>pitch point </em></p><p> Angular velocity ratio is inversely proportional to the </p><p>radii to point <em>P , </em>the <em>pitch point. </em></p><p> Circles drawn through <em>P </em>from each fixed pivot are <em>pitch </em></p><p><em>circles, </em>each with a <em>pitch radius. </em></p><p>Fig. 13–6 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Gear Ratio </strong></p><p><strong>V</strong><sub style="top: 0.37em;"><strong>P </strong></sub>of both gears is the same at point <em>P , </em>the <em>pitch (circle contact) point </em></p><p>푉<sub style="top: 0.41em;">푃 </sub>= 휔<sub style="top: 0.41em;">1</sub>푟<sub style="top: 0.41em;">1</sub>=휔<sub style="top: 0.41em;">2</sub>푟<sub style="top: 0.41em;">2 </sub></p><p>Gear Ratio >1 </p><p>ꢀꢀ</p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">푁</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>= = </p><p>ꢁ</p><p>1</p><p>푁</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>ω<sub style="top: 0.49em;">2 </sub></p><p>ω<sub style="top: 0.37em;">2 </sub>rotates opposite of ω<sub style="top: 0.37em;">1 </sub></p><p><strong>r</strong><sub style="top: 0.37em;"><strong>1 </strong></sub></p><p><em>P</em></p><p><strong>r</strong><sub style="top: 0.37em;"><strong>2 </strong></sub></p><p>ω<sub style="top: 0.49em;">1 </sub></p><p>Pitch Circle of Gears </p><p>N<sub style="top: 0.37em;">2 </sub><br>N<sub style="top: 0.37em;">1 </sub></p><p><strong>Nomenclature </strong></p><p>Smaller Gear is Pinion and Larger one is the gear </p><p>In most application the pinion is the driver, This reduces speed but it increases torque. </p><p><strong>Simple Gear Trains </strong></p><p> For a pinion 2 driving a gear 3, the speed of the driven gear is </p><p><strong>V</strong><sub style="top: 0.37em;"><strong>P </strong></sub></p><p>n<sub style="top: 0.49em;">3 </sub>=ω<sub style="top: 0.49em;">3 </sub></p><p><strong>r</strong><sub style="top: 0.37em;"><strong>2 </strong></sub></p><p><em>P</em></p><p><strong>r</strong><sub style="top: 0.37em;"><strong>3 </strong></sub></p><p>n<sub style="top: 0.49em;">2 </sub>=ω<sub style="top: 0.49em;">2 </sub></p><p>N<sub style="top: 0.37em;">3 </sub><br>N<sub style="top: 0.37em;">2 </sub></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Simple Gear Trains (Gear 2 to Gear 4) </strong></p><p>Fig. 13–27 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Compound Gear Train </strong></p><p> A practical limit on train value for one pair of gears is 10 to 1 To obtain more, compound two gears onto the same shaft </p><p>Fig. 13–28 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p>Compound Gear Trains </p><p></p><ul style="display: flex;"><li style="flex:1"><em>n</em><sub style="top: 0.7483em;">5 </sub></li><li style="flex:1"><em>N</em><sub style="top: 0.7483em;">3 </sub></li></ul><p></p><p> ( )( )( ) </p><p><em>n</em><sub style="top: 0.7425em;">1 </sub><em>N</em><sub style="top: 0.7425em;">2 </sub><em>N</em><sub style="top: 0.7425em;">4 </sub><em>N</em><sub style="top: 0.7425em;">5 </sub></p><ul style="display: flex;"><li style="flex:1"><em>N</em><sub style="top: 0.7486em;">1 </sub></li><li style="flex:1"><em>N</em><sub style="top: 0.7486em;">4 </sub></li></ul><p></p><p><strong>Example 13–3 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–4 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–4 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–5 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–5 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–5 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–5 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–5 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages29 Page
-
File Size-