Gears and Gearing Part 1 Types of Gears Types of Gears

Gears and Gearing Part 1 Types of Gears Types of Gears

<p><strong>Gears and Gearing </strong></p><p><strong>Part 1 </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Types of Gears </strong></li><li style="flex:1"><strong>Types of Gears </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Spur </li><li style="flex:1">Helical </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Bevel </li><li style="flex:1">Worm </li></ul><p></p><p><strong>Nomenclature of Spur-Gear Teeth </strong></p><p>Fig. 13–5 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Rack </strong></p><p> A <em>rack </em>is a spur gear with an pitch diameter of infinity.  The sides of the teeth are straight lines making an angle to the line </p><p>of centers equal to the pressure angle. </p><p>Fig. 13–13 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Tooth Size, Diameter, Number of Teeth </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Tooth Sizes in General Industrial Use </strong></p><p>Table 13–2 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>How an Involute Gear Profile is constructed </strong></p><p>A<sub style="top: 0.37em;">1</sub>B<sub style="top: 0.37em;">1</sub>=A<sub style="top: 0.37em;">1</sub>A<sub style="top: 0.37em;">0</sub>, A<sub style="top: 0.37em;">2</sub>B<sub style="top: 0.37em;">2</sub>=2 A<sub style="top: 0.37em;">1</sub>A<sub style="top: 0.37em;">0 </sub>, etc Pressure Angle Φ has the values of 20° or 25 ° 14.5 ° has also been used. </p><p>Gear profile is constructed from the base circle. Then additional clearance are given. </p><p><strong>Relation of Base Circle to Pressure Angle </strong></p><p>Fig. 13–10 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Standardized Tooth Systems: AGMA Standard </strong></p><p> Common pressure angles f : 20º and 25º  Older pressure angle: 14 ½º </p><p> Common face width: </p><p>3<em>p </em> <em>F </em> 5<em>p </em></p><p></p><p><em>P p </em> </p><p>3 </p><p><em>P</em></p><p>5 </p><p><em>P</em><br> <em>F </em> </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Gear Sources </strong></p><p>• Boston Gear </p><p>• Martin Sprocket </p><p>• W. M. Berg • Stock Drive Products </p><p>…. </p><p>Numerous others </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Conjugate Action </strong></p><p> When surfaces roll/slide against each other and </p><p><strong>produce constant angular velocity ratio, </strong>they are said </p><p>to have <strong>conjugate action</strong><em>. </em></p><p> Can be accomplished if </p><p>instant center of velocity </p><p>between the two bodies remains stationary between the grounded instant centers. </p><p>Fig. 13–6 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Fundamental Law of Gearing: </strong></p><p><strong>The common normal of the tooth </strong></p><p><strong>profiles at all points within the mesh </strong></p><p><strong>must always pass through a fixed point on the line of the centers called pitch point. Then&nbsp;the gearset’s velocity ratio will be constant through the mesh and </strong></p><p><strong>be equal to the ratio of the gear radii. </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Conjugate Action: Fundamental Law of Gearing </strong></p><p> Forces are transmitted on <em>line of action </em>which is normal to the contacting surfaces. </p><p> Velocity. <strong>V</strong><sub style="top: 0.45em;"><strong>P </strong></sub>of both gears is the </p><p><strong>V</strong><sub style="top: 0.37em;"><strong>P </strong></sub></p><p>same at point <em>P , </em>the <em>pitch point </em></p><p> Angular velocity ratio is inversely proportional to the </p><p>radii to point <em>P , </em>the <em>pitch point. </em></p><p> Circles drawn through <em>P </em>from each fixed pivot are <em>pitch </em></p><p><em>circles, </em>each with a <em>pitch radius. </em></p><p>Fig. 13–6 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Gear Ratio </strong></p><p><strong>V</strong><sub style="top: 0.37em;"><strong>P </strong></sub>of both gears is the same at point <em>P , </em>the <em>pitch (circle contact) point </em></p><p>푉<sub style="top: 0.41em;">푃 </sub>= 휔<sub style="top: 0.41em;">1</sub>푟<sub style="top: 0.41em;">1</sub>=휔<sub style="top: 0.41em;">2</sub>푟<sub style="top: 0.41em;">2 </sub></p><p>Gear Ratio &gt;1 </p><p>ꢀꢀ</p><ul style="display: flex;"><li style="flex:1">ꢁ</li><li style="flex:1">푁</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>= = </p><p>ꢁ</p><p>1</p><p>푁</p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p>ω<sub style="top: 0.49em;">2 </sub></p><p>ω<sub style="top: 0.37em;">2 </sub>rotates opposite of ω<sub style="top: 0.37em;">1 </sub></p><p><strong>r</strong><sub style="top: 0.37em;"><strong>1 </strong></sub></p><p><em>P</em></p><p><strong>r</strong><sub style="top: 0.37em;"><strong>2 </strong></sub></p><p>ω<sub style="top: 0.49em;">1 </sub></p><p>Pitch Circle of Gears </p><p>N<sub style="top: 0.37em;">2 </sub><br>N<sub style="top: 0.37em;">1 </sub></p><p><strong>Nomenclature </strong></p><p>Smaller Gear is Pinion and Larger one is the gear </p><p>In most application the pinion is the driver, This reduces speed but it increases torque. </p><p><strong>Simple Gear Trains </strong></p><p> For a pinion 2 driving a gear 3, the speed of the driven gear is </p><p><strong>V</strong><sub style="top: 0.37em;"><strong>P </strong></sub></p><p>n<sub style="top: 0.49em;">3 </sub>=ω<sub style="top: 0.49em;">3 </sub></p><p><strong>r</strong><sub style="top: 0.37em;"><strong>2 </strong></sub></p><p><em>P</em></p><p><strong>r</strong><sub style="top: 0.37em;"><strong>3 </strong></sub></p><p>n<sub style="top: 0.49em;">2 </sub>=ω<sub style="top: 0.49em;">2 </sub></p><p>N<sub style="top: 0.37em;">3 </sub><br>N<sub style="top: 0.37em;">2 </sub></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Simple Gear Trains (Gear 2 to Gear 4) </strong></p><p>Fig. 13–27 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Compound Gear Train </strong></p><p> A practical limit on train value for one pair of gears is 10 to 1  To obtain more, compound two gears onto the same shaft </p><p>Fig. 13–28 </p><p><em>Shigley’s Mechanical Engineering Design </em></p><p>Compound Gear Trains </p><p></p><ul style="display: flex;"><li style="flex:1"><em>n</em><sub style="top: 0.7483em;">5 </sub></li><li style="flex:1"><em>N</em><sub style="top: 0.7483em;">3 </sub></li></ul><p></p><p> ( )( )( ) </p><p><em>n</em><sub style="top: 0.7425em;">1 </sub><em>N</em><sub style="top: 0.7425em;">2 </sub><em>N</em><sub style="top: 0.7425em;">4 </sub><em>N</em><sub style="top: 0.7425em;">5 </sub></p><ul style="display: flex;"><li style="flex:1"><em>N</em><sub style="top: 0.7486em;">1 </sub></li><li style="flex:1"><em>N</em><sub style="top: 0.7486em;">4 </sub></li></ul><p></p><p><strong>Example 13–3 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–4 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–4 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–5 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–5 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–5 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–5 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p><p><strong>Example 13–5 </strong></p><p><em>Shigley’s Mechanical Engineering Design </em></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us