The Evolving Universe and the Origin of Life Pekka Teerikorpi • Mauri Valtonen • Kirsi Lehto • Harry Lehto • Gene Byrd • Arthur Chernin The Evolving Universe and the Origin of Life The Search for Our Cosmic Roots 123 Dr. Pekka Teerikorpi Dr. Mauri Valtonen University of Turku University of Turku Department of Physics and Astronomy Department of Physics and Astronomy Tuorla Observatory Tuorla Observatory FI-21500 Piikkio¨ FI-21500 Piikkio¨ Finland Finland pekkatee@utu.fi mavalto@utu.fi Dr. Kirsi Lehto Dr. Harry Lehto University of Turku University of Turku Department of Biology Department of Physics and Astronomy Laboratory of Plant Physiology Tuorla Observatory FI-20014 Turku FI-21500 Piikkio¨ Finland Finland klehto@utu.fi hlehto@utu.fi Dr. Gene Byrd Dr. Arthur Chernin University of Alabama Sternberg State Astronomical Institute Department of Physics and Astronomy Universitetskiy Prospect 13 P.O. Box 870324 Moscow Tuscaloosa AL 35487-0324 Russia 119899 USA [email protected] [email protected] ISBN 978-0-387-09533-2 e-ISBN 978-0-387-09534-9 Library of Congress Control Number: 2008930766 c 2009 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Cover illustration: Printed on acid-free paper 987654321 springer.com Preface A golden thread runs through the history of humanity – even in prehistory, when writing was unknown, there was the need to understand, that restless spark within us. We have written this book for anybody interested in the quest of knowledge – at least to the extent that he or she wishes to appreciate the main results of science, which has changed our way of thinking about the world. Born in a society filled with applications of science and engineering, we often take all this for granted and do not stop to think of the steps, invisible as they are in the distant past, that had to be taken before our world emerged. We take our readers on a voyage from the treasures of the past to the frontiers of modern science which includes physics, cosmology, and astrobiology. We divide the presentation into four parts, which approximately correspond to the major waves of scientific exploration, past to present. The first wave, The Widening World View arose in Antiquity and re-emerging at the end of the Middle Ages, was based on visual observations of the world. Quite a lot was accomplished with the naked eye, together with simple devices and reason- ing. Both Ptolemy and Copernicus belonged to this great era. Around 1600, when the new sun-centered worldview was advancing and the telescope was invented, Galileo followed by many others, could see deeper and deeper in space. This led, among other things, to determination of the distance to the Sun and to the other stars faintly glimmering in the sky. In the twentieth century, remote galaxies were reached and observing windows other than optical were opened to astronomers. A parallel wave we call Physical Laws of Nature was powered by the experimen- tal/mathematical approach to physics, started by Galileo as well, and accelerated by the work of Newton toward modern physics. This wave took us to the realm of atoms and elementary particles, and together with the parallel astronomical work finally led to the modern wave of exploration, the Universe, describing the earliest processes in its origin and expansion from a superdense state 14 billion years ago to our universe of galaxies today. In our own times a new and fascinating wave of exploration of the universe began which we call Life in the Universe, when humanity learned to launch devices and even people beyond the Earth. One is reminded of the words by Tsiolkovski “The v vi Preface planet is the cradle of intelligence, but you do not live in the craddle for ever.” Up to now only the Moon has been visited by humans, but numerous space probes have delivered new and impressive information about the planets, asteroids, and comets of the Solar System, and about the Sun itself. Astrobiology, the new interdisciplinary field of science, has thus received a strong boost forward, as now it has become pos- sible to map in detail the wide range of conditions inside our planetary system and to see where life might have originated in addition to the Earth. At the same time, thanks to the advancements in telescopes, astronomers have been able to discover other planetary systems and the count of known extrasolar planets now reaches hun- dreds. These developments have given new perspectives for the role of life and the human race in the universe. Two decades ago two of the authors (P.T., M.V.) wrote a book in Finnish, pub- lished by the Ursa Astronomical Association (“Cosmos – the developing view of the world”). The present book owes to that one for its general outline and spirit, but its contents reflect the team of writers with diverse specialties and the many new, even revolutionary developments in cosmology, space research, and astrobiology during these years. In writing the text, we have had in mind a wide range of audience, from laymen interested in science to students of both humanities and sciences in universities. Even professional scientists in physics or astronomy may find the historical parts and astrobiological excursions interesting, while for biologists it may be useful to refresh their knowledge of other sciences. We write on an accessible level, avoiding mathematics and detailed explanations. But the fact remains that some subjects of modern science, in physics, cosmology, and biology as well, are inherently compli- cated and difficult to describe “simply.” We have either skipped such topics or have given descriptions requiring some attentive reading. We conclude some chapters with brief excursions to interesting “frontier” topics, in order to convey the reader a feeling of what kinds of things fascinate scientists today (strange phenomena of the microworld, many dimensional worlds, cosmological dark energy, the origin of life, the greenhouse effect, ...). Finally, teachers may find this book useful for undergraduate college courses, particularly those who recognize that it is now difficult to divide science into tradi- tional subjects or those who recognize the connections between humanities and the sciences. To this purpose we provide a Web site document with a listing of interest- ing Web sites covering the parts of the text plus a collection of short multiple choice questions divided by subject: http://bama.ua.edu/∼byrd/Evolving UniverseWeb.doc We wish to thank several persons who have read parts of the manuscript or have in other ways helped this project, e.g., by allowing the use of illustrations. We mention Yuri Baryshev, Andrej Berdyugin, Svetlana Berdyugina, Anthony Fairall, Andrea Gabrielli, Ismael Gognard, Jennifer Goldman, Sethanne Howard, Pekka Heinam¨ aki,¨ Janne Holopainen, Tom Jarrett, Andreas Jaunsen, Michael Joyce, Hannu Karttunen, Perttu Keinanen,¨ Bill Keel, Tapio Korhonen, John Lanoue, Jean- Pierre Luminet, Seppo Mattila, Chris Mihos, Seppo Mikkola, Markku Muinonen, Sami Niemi, Kari Nilsson, Pasi Nurmi, Jyri Nar¨ anen,¨ Georges Paturel, Saul Preface vii Perlmutter, Luciano Pietronero, Laura Portinari, Travis Rector, Rami Rekola, Shane D. Ross, John Ruhl, Allan Sandage, Markku Sarimaa, Aimo Sillanpa¨a,¨ Francesco Sylos Labini, Leo Takalo, Gilles Theureau, Malene Thyssen, Luc Viatour, Iiro Vilja, and Petri Vais¨ anen.¨ We are grateful to Harry Blom, Christopher Coughlin, and Jenny Wolkowicki of Springer-Verlag, New York for very good collaboration and patience during the preparation process of this book. Similarly, we thank Prasad Sethumadhavan of SPi Technologies India. August 2008 The authors Contents List of Tables ......................................................xvii Part I The Widening World View 1 When Science Was Born ......................................... 3 Prehistoric Astronomy: Science of the Horizon ....................... 3 Writing on the Sky Vault and on Clay Tablets . ....................... 5 Constellations and Horoscope Signs . ........................... 6 TheIonianWayofThinking....................................... 9 Pythagoras Invents the Cosmos . .................................. 10 2 Science in Athens ............................................... 13 Anaxagoras Makes the Celestial Bodies Mundane . ................ 13 The Atomic Doctrine ............................................. 14 Plato Establishes the Academy . .................................. 15 The Universe of Aristotle ......................................... 18 3 Planetary Spheres and the Size of the Universe ..................... 23 The Theory of Concentric Spheres . ........................... 23 TheEpicycleTheory............................................. 26 Hipparchus Discovers the Slow Wobbling of the Celestial Sphere . ..... 26 Ptolemy........................................................ 28 TheSizeoftheSphericalEarth...................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages507 Page
-
File Size-