Rational Covariance Extension, Multivariate Spectral Estimation, and Related Moment Problems: Further Results and Applications

Rational Covariance Extension, Multivariate Spectral Estimation, and Related Moment Problems: Further Results and Applications

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE Rational Covariance Extension, Multivariate Spectral Estimation, and Related Moment Problems: Further Results and Applications Ph.D. Candidate: Bin ZHU Advisor: Prof. Giorgio PICCI Coordinator: Prof. Andrea NEVIANI Ph.D. School in Information Engineering Department of Information Engineering University of Padova 2018 iv University of Padova Department of Information Engineering Ph.D. Course in Information Engineering Information and Communication Technologies The Automatica Group Rational Covariance Extension, Multivariate Spectral Estimation, and Related Moment Problems: Further Results and Applications Coordinator: Prof. Andrea NEVIANI Supervisor: Prof. Giorgio PICCI Ph.D. Student: Bin ZHU vi Acknowledgements First I would like to thank my advisor Prof. Giorgio Picci, who is really an inventor of ideas when dealing with research problems. He is also very generous with his time, encouraging, and gives me plenty of freedom to work on problems that I would like to pursue. He is willing to help, whether in research or daily life. He is surely humorous and knows a load of funny gossips of people in academia. I enjoy talking with him a lot. I am also grateful for the support from my family, especially my wife Bili 钟碧莉 and my little daughter Giulietta 朱纯熙 who was born in November 2017. They have made me a better human being in terms of interaction with people, in particular family members, although I am still learning and trying to improve. There have been difficult situations in the past year for us, even more so for Bili since she has the major responsibility of nourishing Giulietta while at the same time she has to continue her Ph.D. But the baby power of Giulietta can alway cheer us up and everything will hopefully get better and better. I wish to thank also people at the Department of Information Engineering (DEI). I would like to mention particularly Profs. Augusto Ferrante and Mattia Zorzi, who have constantly offered their time and suggestions for my work. My office mates in Room 330 have together created a relaxing working environment, with social activities from time to time, sometimes (twice in my experience) in the house of Nicoletta. They are all nice people and ready to help, from theorem proving to Italian language consultation. Special gratitude goes to my former advisor Prof. Anders Lindquist (who is also a reviewer of this thesis) at Shanghai Jiao Tong University. He was the one who introduced me to the problem of rational covariance extension and led me into academia. It was also because of his appreciation and encouragement that I came to Padova to pursue a doctorate. I must acknowledge the extremely nice comments and many useful suggestions from the thesis reviewer Prof. Federico Ramponi. Finally, I would like to thank China Scholarship Council (CSC) for the three-year financial support for my Ph.D. under file no. 201506230140. viii Summary This dissertation concerns the problem of spectral estimation subject to moment constraints. Its scalar counterpart is well-known under the name of rational covariance extension which has been extensively studied in past decades. The classical covariance extension problem can be reformulated as a truncated trigonometric moment problem, which in general admits infinitely many solutions. In order to achieve positivity and rationality, optimization with entropy-like functionals has been exploited in the literature to select one solution with a fixed zero structure. Thus spectral zeros serve as an additional degree of freedom and in this way a complete parametrization of rational solutions with bounded degree can be obtained. New theoretical and numerical results are provided in this problem area of systems and control and are summarized in the following. First, a new algorithm for the scalar covariance extension problem formulated in terms of periodic ARMA models is given and its local convergence is demonstrated. The algorithm is formally extended for vector processes and applied to finite-interval model approximation and smoothing problems. Secondly, a general existence result is established for a multivariate spectral estimation problem formulated in a parametric fashion. Efforts are also made to attack the difficult uniqueness question and some preliminary results are obtained. Moreover, well-posedness in a special case is studied throughly, based on which a numerical continuation solver is developed with a provable convergence property. In addition, it is shown that solution to the spectral estimation problem is generally not unique in another parametric family of rational spectra that is advocated in the literature. Thirdly, the problem of image deblurring is formulated and solved in the framework of the multidimensional moment theory with a quadratic penalty as regularization. Keywords: Rational covariance extension, ARMA modeling, multivariate spectral estimation, generalized moment problem, parametrization of rational spectra, well-posedness, numerical continuation method, convex optimization. x Sommario Questa tesi riguarda il problema della stima spettrale soggetta a vincoli sui momenti. La sua controparte scalare è ben conosciuta sotto il nome di estensione razionale delle covarianze ed è stata ampiamente studiata negli ultimi decenni. Il classico problema di estensione delle covarianze può essere riformulato come un problema dei momenti trigonometrici troncato, che in generale ammette infinite soluzioni. Al fine di ottenere positività e razionalità, in letteratura è stata sfruttata l’ottimizzazione con funzionali entropici per selezionare una soluzione con una struttura degli zeri fissa. Così gli zeri spettrali fungono da grado di libertà addizionale e permettono di ottenere una parametrizzazione completa delle soluzioni razionali con grado limitato. Nuovi risultati teorici e numerici sono forniti in questa branca della teoria dei sistemi e del controllo e sono riassunti di seguito. Innanzitutto si propone un nuovo algoritmo per il problema scalare dell’estensione delle covarianze formulato in termini di modelli ARMA periodici e se ne dimostra la convergenza locale. L’algoritmo è esteso formalmente ai processi vettoriali e applicato ai problemi di approssimazione dei modelli a intervallo finito e di livellamento. In secondo luogo viene stabilito un risultato di esistenza generale per un problema di stima spettrale multivariata formulato in modo parametrico. Si fanno anche sforzi per attaccare la difficile questione dell’unicità e si ottengono alcuni risultati preliminari. Inoltre, in un caso speciale è studiata a fondo la buona posizione del problema, in base alla quale è sviluppato un risolutore a continuazione numerica con convergenza dimostrabile. Per di più, si dimostra che la soluzione al problema della stima spettrale in generale non è unica in un’altra famiglia parametrica di spettri razionali proposta in letteratura. In terzo luogo, il problema del deblurring delle immagini è formulato e risolto nel quadro della teoria multidimensionale dei momenti con una regolarizzazione a penalità quadratica. Parole chiave: Estensione razionale delle covarianze, modellazione ARMA, stima spettrale multivariata, problema dei momenti generalizzato, parametrizzazione di spettri razionali, buona posizione, metodo di continuazione numerica, ottimizzazione convessa. xii Contents 1 Introduction 1 2 Periodic ARMA Modeling Based on Covariance Matching 11 2.1 Introduction ......................................... 11 2.2 Covariance Matching for Scalar Periodic ARMA Processes . 12 2.2.1 Bilateral ARMA Model ............................. 14 2.2.2 Unilateral ARMA Model and Problem Formulation . 16 2.3 An Iterative Algorithm Based on a Nonlinear Yule-Walker Equation . 18 2.4 Proof of Local Convergence ............................... 24 2.5 Generalization to Vector Processes ........................... 28 2.5.1 Problem of Matrix Covariance Matching . 30 2.6 Smoothing of Stationary Linear Systems with Boundary Constraints . 33 2.6.1 A Numerical Example .............................. 36 2.7 Conclusion ......................................... 38 3 Further Results on a Parametric Multivariate Spectral Estimation Problem 39 3.1 Introduction ........................................ 39 3.2 Parametric Formulation of a Multivariate Spectral Estimation Problem . 41 3.3 Well-Posedness Given a Scalar Prior .......................... 45 3.3.1 Continuity with Respect to the Prior Function . 47 3.4 Existence of a Solution Given a Matrix Prior ...................... 51 3.4.1 A Short Review of the Degree Theory ..................... 51 3.4.2 Proof of Existence ................................ 53 3.4.3 The Special Case of Covariance Extension . 56 3.5 A Diffeomorphic Spectral Factorization ........................ 57 3.5.1 Characterization of the Diffeomorphism ................... 58 3.6 Preliminary Results on the Uniqueness Question ................... 61 3.7 Concluding Remarks ................................... 65 xiv Contents 4 Numerical Solvers for the Spectral Estimation Problem 67 4.1 Introduction ........................................ 67 4.2 Optimization in the Domain of Spectral Factors ................... 68 4.2.1 Local Convergence of Descent Algorithms . 70 4.3 A Continuation Solver for the Parametric Problem . 73 4.3.1 Convergence Analysis .............................. 76 4.3.2 Computation of the Inverse Jacobian ..................... 81 4.4 Conclusions ......................................... 86 5 On an Alternative Parametrization of Matricial Spectral

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    162 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us