Beam Element

Beam Element

Finite Element Method: Beam Element Beam Element ¨ Beam: A long thin structure that is subject to the vertical loads. A beam shows more evident bending deformation than the torsion and/or axial deformation. ¨ Bending strain is measured by the lateral deflection and the rotation -> Lateral deflection and rotation determine the number of DoF (Degree of Freedom). Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element ¨ Sign convention 1. Positive bending moment: Anti-clock wise rotation. 2. Positive load: y$ -direction. 3. Positive displacement: y$ -direction. Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element ¨ The governing equation dVdV -w-wdxdx$ +ˆ -dV dV= 0 =0or or w w= =- - dxdx$ ˆ dMdM VVdxdx$ ˆ+-dM dM= =0 0or or VV == dxdx$ˆ Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element ¨ Relation between beam curvature (k ) and bending moment 1 M d 2v$ M k = = or = r EI dx$ 2 EI d 2v$ Curvature for small slope (q = dv$ / dx$ ): k = ¨ dx$ 2 r : Radius of the deflection curve, v$: Lateral displacement function along the y$ -axis direction E : Stiffness coefficient, I : Moment of inertia along the z$-axis Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element Solving the equation with M , d 2 F d 2v$I EI = - wax$f dx$ 2 HG dx$ 2 KJ When EI is constant, and force and moment are only applied at nodes, d 4v$ EI = 0 dx$ 4 Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element Step 1: To select beam element type Step 2: To select displacement function Assumption of lateral displacement 3 2 vˆ() xˆ = a1 xˆ + a 2 xˆ + a 3 xˆ + a 4 - Complete 3-order displacement function is suitable, because it has four degree of freedom (one lateral displacement and one small rotation at each node) - The function is proper, because it satisfies the fundamental differential equation of a beam. - The function satisfies continuity of both displacement and slope at each node. $ $ $ ˆ Representing v$ with functions of d1y , d2 y , f1, f2 $ v$ (0) = d1y = a4 dv$a0f $ = f1 = a3 dv$ $ 3 2 v$aLf = d2 y = a1 L + a2 L + a3 L + a4 $ dvaLf $ 2 = f 2 = 3a1L + 2a2 L + a3 dx$ Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element $ $ $ ˆ Replacing a1~a4 with d1y , d2 y , f1, f2 2 1 v$ = L d$ - d$ + f$ +f$ O x$ 3 3 e 1y 2 y j 2 d 1 2 i NM L L QP 3 1 + L- d$ - d$ - 2f$ +f$ O x$ 2 +f$ x$ + d$ 2 e 1y 2 y j d 1 2 i 1 1y NM L L QP $ Representing it in matrix form, v$ = N odt $ Rd1y U | f$ | d$ = | 1 | o t S $ V d N = N1 N2 N3 N4 | 2 y | |f$ | T 2 W 1 1 N = 2x$ 3 - 3x$ 2 L + L3 N = x$ 3 L - 2x$ 2 L2 + x$ L3 1 L3 c h 2 L3 c h 1 1 N = -2x$ 3 + 3x$ 2 L N = x$ 3 L - x$ 2 L2 3 L3 c h 4 L3 c h where N1, N2, N3 , N4 : shape functions of the beam element Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element Step 3: To define strain-displacement relation and stress-strain relation Assume that the equation of strain-displacement relation is valid du$ dv$ d 2v$ $ $ $ $ $ $ $ e x bx, yg = , u = - y => e x bx, yg = - y 2 dx$ dx$ dx$ Basic assumption: Cross-section of the beam sustains its shape after deformation by bending, and generally rotates by degree of bdv$ / dx$g . Bending moment-lateral displacement relation and shear force-lateral displacement relation d 2v$ d 3v$ $ $ $ mbxg = EI 2 V = EI 3 dx$ dx$ Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element Step 4: To derive an element stiffness matrix and governing equations by direct stiffness method ¨ Element stiffness matrix and governing equations d 3v$ 0 EI f$ = V$ = EI b g = 12d$ + 6Lf$ -12d$ + 6Lf$ 1y dx$3 L3 e 1y 1 2 y 2 j d 2v$ 0 EI m$ = - m$ = - EI b g = 6Ld$ + 4L2f$ - 6d$ + 2L2f$ 1 dx$2 L3 e 1y 1 2 y 2 j d 3v$ L EI f$ = -V$ = - EI b g = -12d$ - 6Lf$ +12d$ - 6Lf$ 2 y dx$3 L3 e 1y 1 2 y 2 j d 2v$ L EI m$ = m$ = EI b g = 6Ld$ + 2L2f$ - 6Ld$ + 4L2f$ 2 dx$2 L3 e 1y 1 2 y 2 j - Matrix Form $ 12 6L -12 6L $ R f1y U L ORd1y U L 12 6L -12 6L O | | 2 2 | | 2 2 m$ EI M 6L 4L -6L 2L P f$ EI M 6L 4L -6L 2L P | 1 | = M P| 1 | $ M P S V 3 S V k = 3 f$ L -12 -6L 12 -6L d$ L -12 -6L 12 -6L | 2 y | M P| 2 y | M P |m$ | M 6L 2L2 -6L 4L2 P|f$ | M 6L 2L2 -6L 4L2 P T 2 W N QT 2 W N Q Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element Step 5: To constitute a global stiffness matrix using boundary conditions Assemble example Assume EI of the beam element is constant. 1000 lb load and 1000 lb - ft moment are applied at the center of the beam. Assume load and moment were only applied at nodes. Left end of the beam is fixed and right end is pin-connected. The beam is divided into two elements (nodes 1, 2, and 3 as shown above figure). Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element d1y f1 d2 y f 2 d2 y f 2 d3 y f 3 L 12 6L -12 6L O L 12 6L -12 6L O EI M 6L 4L2 -6L 2L2 P EI M 6L 4L2 -6L 2L2 P k (1) = M P k (2) = M P L3 M-12 -6L 12 -6LP L3 M-12 -6L 12 -6LP M 2 2 P M 2 2 P N 6L 2L -6L 4L Q N 6L 2L -6L 4L Q R F1y U L 12 6L -12 6L 0 0 O Rd1y U | M | M 6L 4L2 -6L 2L2 0 0 P | f | | 1 | M P | 1 | |F2 y | EI M-12 -6L 12 +12 -6L + 6L -12 6L P |d2 y | = ´ SM V L3 M 6L 2L2 -6L + 6L 4L2 + 4L2 -6L 2L2 P Sf V | 2 | M P | 2 | |F3y | M 0 0 -12 -6L 12 -6LP |d3y | | M | M 0 0 6L 2L2 -6L 4L2 P | f | T 3 W N Q T 3 W Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element Boundary conditions and constrains at the node 1(fixed) and node 3(pin-connected) are f1 = 0 d1y = 0 d3y = 0 R-1000U L24 0 6L ORd2 y U EI | 1000 | = M 0 8L2 2L2 P|f | S V L3 M PS 2 V (5.2.5) | 0 | 6L 2L2 4L2 | f | T W NM QPT 3 W Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element Example: Beam analysis using direct stiffness method Cantilever beam supported by roller at the center Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element Load P is applied at node 1. Length: 2L ,Stiffness: EI Constrains: (1) Roller at node 2, (2) Fixed at node 3. - Global stiffness matrix d1y f1 d2 y f 2 d3 y f 3 L12 6L -12 6L 0 0 O M 2 2 P M 4L -6L 2L 0 0 P EI M 12 +12 -6L + 6L -12 6L P K = L3 M 4L2 + 4L2 -6L 2L2 P M P M 12 -6LP M 2 P N Symmetry 4L Q Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element RF1y U L 12 6L -12 6L 0 0 ORd1y U |M | M 6L 4L2 -6L 2L2 0 0 P| f | | 1 | M P| 1 | |F2 y | EI M-12 -6L 24 0 -12 6L P|d2 y | = SM V L3 M 6L 2L2 0 8L2 -6L 2L2 PSf V | 2 | M P| 2 | |F3y | M 0 0 -12 -6L 12 -6LP|d3y | |M | M 2 2 P|f | T 3 W N 0 0 6L 2L -6L 4L QT 3 W Boundary conditions d2 y = 0 d3y = 0 f 3 = 0 R-PU L12 6L 6L ORd1y U EI | 0 | = M6L 4L2 2L2 P|f | S V L3 M PS 1 V | 0 | 6L 2L2 4L2 |f | T W NM QPT 2 W 7PL3 3PL2 PL2 d1y = - f1 = f 2 = 12EI 4EI 4EI Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element ¨ Substituting the obtained values to the final equation, R 7PL3 U F 12 6L -12 6L 0 0 - R 1y U L O| 12EI | |M | M 6L 4L2 -6L 2L2 0 0 P| 3PL2 | | 1 | M P| | |F2 y | EI M-12 -6L 24 0 -12 6L P| 4EI | = 2 2 2 0 S V 3 M PS 2 V M2 L 6L 2L 0 8L -6L 2L PL | | M P| | |F3y | M 0 0 -12 -6L 12 -6LP| 4EI | |M | M 0 0 6L 2L2 -6L 4L2 P| 0 | T 3 W N Q| | T 0 W 5 F = - P M = 0 F = P 1y 1 2 y 2 3 1 M = 0 F = - P M = PL 2 3y 2 3 2 F1y = - P : Force at node 1 F2 y , F3y , M3 : Reacting forces and moment at nodes M1 , M2 : Zero Mechanics and Design SNU School of Mechanical and Aerospace Engineering Finite Element Method: Beam Element ¨ Calculating local nodal loads Force at the element 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us