Trigonometry Cram Sheet

Trigonometry Cram Sheet

Trigonometry Cram Sheet August 3, 2016 Contents 6.2 Identities . 8 1 Definition 2 7 Relationships Between Sides and Angles 9 1.1 Extensions to Angles > 90◦ . 2 7.1 Law of Sines . 9 1.2 The Unit Circle . 2 7.2 Law of Cosines . 9 1.3 Degrees and Radians . 2 7.3 Law of Tangents . 9 1.4 Signs and Variations . 2 7.4 Law of Cotangents . 9 7.5 Mollweide’s Formula . 9 2 Properties and General Forms 3 7.6 Stewart’s Theorem . 9 2.1 Properties . 3 7.7 Angles in Terms of Sides . 9 2.1.1 sin x ................... 3 2.1.2 cos x ................... 3 8 Solving Triangles 10 2.1.3 tan x ................... 3 8.1 AAS/ASA Triangle . 10 2.1.4 csc x ................... 3 8.2 SAS Triangle . 10 2.1.5 sec x ................... 3 8.3 SSS Triangle . 10 2.1.6 cot x ................... 3 8.4 SSA Triangle . 11 2.2 General Forms of Trigonometric Functions . 3 8.5 Right Triangle . 11 3 Identities 4 9 Polar Coordinates 11 3.1 Basic Identities . 4 9.1 Properties . 11 3.2 Sum and Difference . 4 9.2 Coordinate Transformation . 11 3.3 Double Angle . 4 3.4 Half Angle . 4 10 Special Polar Graphs 11 3.5 Multiple Angle . 4 10.1 Limaçon of Pascal . 12 3.6 Power Reduction . 5 10.2 Rose . 13 3.7 Product to Sum . 5 10.3 Spiral of Archimedes . 13 3.8 Sum to Product . 5 10.4 Lemniscate of Bernoulli . 13 3.9 Linear Combinations . 5 10.5 Folium of Descartes . 14 3.10 Other Related Identities . 5 10.6 Spiral of Fermat . 14 3.11 Identities without Variables . 6 10.7 Cissoid of Diocles . 14 4 Graphs 6 10.8 Epispiral . 14 4.1 y = sin x .................... 6 10.9 Lituus . 15 4.2 y = cos x .................... 6 10.10 Eight Curve . 15 4.3 y = tan x .................... 6 10.11 Butterfly Curve . 15 4.4 y = csc x .................... 6 10.12 Strophoid . 15 4.5 y = sec x .................... 6 10.13 Cochleoid . 16 4.6 y = cot x .................... 6 10.14 Cycloid of Ceva . 16 10.15 Freeth’s Nephroid . 16 5 Tables 7 5.1 Exact Values of Trigonometric Functions . 7 11 Miscellaneous Stuff 17 5.2 Relations Between Trig Functions . 8 11.1 Pythagorean Triples . 17 11.2 Triangle Centers . 17 6 Inverse Trigonometric Functions 8 11.3 Area of the Triangle . 18 6.1 Principal Values . 8 11.4 Other Coordinate Systems . 18 1 Trigonometry Cram Sheet alltootechnical.tk 1 Definition 1.2 The Unit Circle y Triangle ABC has a right angle at C and sides of length a, b, c. The trigonometric functions of angle A are defined as (0, 1) √ √ follows: 1 3 1 3 − 2 , 2 2 , 2 √ √ √ √ 2 2 2 2 π − 2 , 2 2 , 2 a opposite 2 1. sin A = = 2π π √ 3 3 √ c hypotenuse 3 1 3 1 − , 3π ◦ π , 2 2 4 90 4 2 2 120◦ 60◦ 5π π b adjacent 6 6 2. cos A = = 150◦ 30◦ c hypotenuse (−1, 0) (1, 0) π 180◦ 3600◦◦ 2π x a opposite 3. tan A = = b adjacent 210◦ 330◦ 7π 11π 6 6 240◦ 300◦ √ 5π 7π √ c hypotenuse 3 1 270◦ 3 1 − 2 , − 2 4 4 2 , − 2 4. csc A = = 4π 5π a opposite 3 3 √ √ 3π √ √ 2 2 2 2 2 − 2 , − 2 2 , − 2 √ √ c hypotenuse − 1 , − 3 1 , − 3 5. sec A = = 2 2 2 2 b adjacent (0, −1) b adjacent 6. cot A = = a opposite 1.3 Degrees and Radians 1.1 Extensions to Angles > 90◦ A radian is that angle θ subtended at center O of a circle by an arc MN equal to the radius r. Since 2π radians = 360◦ A point P in the Cartesian plane has coordinates (x, y), we have: where x is considered as positive along OX and negative 0 0 along OX , while y is considered as positive along OY and 1 radian = 180◦/π = 57.29577951308232 ... ◦ negative along OY . The distance from origin O to point P is positive and denoted by r = px2 + y2. The angle A de- 1◦ = π/180 radians = 0.017453292519943 ... radians scribed counterclockwise from OX is considered positive. If it is described clockwise from OX it is considered negative. 1.4 Signs and Variations For an angle A in any quadrant, the trigonometric functions of A are defined as follows: Quadrant sin A cos A tan A + + + y I 1. sin A = (0, 1) (1, 0) (0, ∞) r + − − II (1, 0) (0, −1) (−∞, 0) x − − + 2. cos A = III r (0, −1) (−1, 0) (0, ∞) − + − y IV 3. tan A = (−1, 0) (0, 1) (−∞, 0) x Quadrant cot A sec A csc A r + + + 4. csc A = I y (∞, 0) (1, ∞) (∞, 1) − − + II r (0, −∞) (∞, −1) (1, ∞) 5. sec A = + − − x III (∞, 0) (−1, ∞) (∞, −1) x − + − 6. cot A = IV y (0, −∞) (∞, 1) (−1, ∞) 2 Trigonometry Cram Sheet alltootechnical.tk 2 Properties and General Forms 2.1.4 csc x Domain: {x|x 6= kπ, k ∈ }or S (kπ, (k + 1) π) 2.1 Properties Z k∈Z 2.1.1 sin x Range: {y|y ≤ 1 ∪ y ≥ 1} or (−∞, −1] ∪ [1, +∞) Period: 2π Domain: {x|x ∈ R} or (−∞, +∞) Range: {y| − 1 ≤ y ≤ 1} or [−1, 1] VA: x = kπ where k ∈ Z Period: 2π x-intercepts: none VA: none Parity: odd x-intercepts: kπ where k ∈ Z Parity: odd 2.1.5 sec x π S (k−1)π (k+1)π Domain: x|x 6= + kπ, k ∈ Z or , 2.1.2 cos x 2 k∈Z 2 2 Range: {y|y ≤ 1 ∪ y ≥ 1} or (−∞, −1] ∪ [1, +∞) Domain: {x|x ∈ R} or (−∞, +∞) Range: {y| − 1 ≤ y ≤ 1} or [−1, 1] Period: 2π π Period: 2π VA: x = 2 + kπ where k ∈ Z VA: none x-intercepts: none x-intercepts: π + kπ where k ∈ 2 Z Parity: even Parity: even 2.1.6 cot x 2.1.3 tan x S Domain: {x|x 6= kπ, k ∈ Z} or k∈ (kπ, (k + 1) π) Domain: x|x 6= π + kπ, k ∈ or S (k−1)π , (k+1)π Z 2 Z k∈Z 2 2 Range: {y|y ∈ R} or (−∞, +∞) Range: {y|y ∈ R} or (−∞, +∞) Period: π Period: π π VA: x = kπ where k ∈ Z VA: x = 2 + kπ where k ∈ Z x-intercepts: π + kπ where k ∈ x-intercepts: kπ where k ∈ Z 2 Z Parity: odd Parity: odd 2.2 General Forms of Trigonometric Functions Given some trigonometric function f (x), its general form is represented as y = Af (B (x − C)) + D, where its amplitude 2π π is |A|, its period is |B| or |B| (for tangent and cotangent), its phase shift is C, and its vertical translation is D units upward (if D > 0) or D units downward (if D < 0). The maximum and minimum value for sin x and cos x is A + D and −A + D respectively. amplitude period phase shift vertical translation 1 1 1 1 f f f f −1 0 1 2 3 −1 0 1 2 3 −1 0 1 2 3 −1 0 1 2 3 a −1 a −1 a −1 a −1 −2 −2 −2 −2 3 Trigonometry Cram Sheet alltootechnical.tk 3 Identities 3.2 Sum and Difference 3.1 Basic Identities sin (α ± β) = sin α cos β ± cos α sin β Reciprocal Identities cos (α ± β) = cos α cos β ∓ sin α sin β 1 1 tan α ± tan β csc θ = ; sin θ = tan (α ± β) = sin θ csc θ 1 ∓ tan α tan β 1 1 cot α cot β ∓ 1 sec θ = ; cos θ = cot (α ± β) = cos θ sec θ cot β ± cot α 1 1 cot θ = ; tan θ = tan θ cot θ 3.3 Double Angle sin θ csc θ = cos θ sec θ = tan θ cot θ = 1 sin 2α = 2 sin α cos α Ratio Identities cos 2α = cos2 α − sin2 α = 1 − 2 sin2 α = 2 cos2 α − 1 sin θ sin θ tan θ = ; cos θ = ; sin θ = cos θ tan θ 2 tan α cos θ tan θ tan 2α = 1 − tan2 α cos θ cos θ cot θ = ; sin θ = ; cos θ = sin θ cot θ sin θ cot θ 3.4 Half Angle Pythagorean Identities Let Qn, where n ∈ {1, 2, 3, 4}, denote the set of all angles within the nth quadrant of the Cartesian plane. sin2 θ + cos2 θ = 1; sin2 θ = 1 − cos2 θ; cos2 θ = 1 − sin2 θ 2 2 2 2 2 2 q 1−cos α α tan θ + 1 = sec θ; tan θ = sec θ − 1; sec θ − tan θ = 1 α 2 if 2 ∈ (Q1 ∪ Q2) sin = q 2 2 2 2 2 2 2 1−cos α α cot θ + 1 = csc θ; cot θ = csc θ − 1; csc θ − cot θ = 1 − 2 if 2 ∈ (Q3 ∪ Q4) q 1+cos α α Co-function Identities α 2 if 2 ∈ (Q1 ∪ Q4) cos = q π 2 − 1+cos α if α ∈ (Q ∪ Q ) sin − θ = cos θ 2 2 2 3 2 π α sin α 1 − cos α cos − θ = sin θ tan = = = csc α − cot α 2 2 1 + cos α sin α π tan − θ = cot θ 2 3.5 Multiple Angle π csc − θ = sec θ sin 3α = 3 sin α − 4 sin3 α 2 π 3 sec − θ = csc θ cos 3α = 4 cos α − 3 cos α 2 3 tan α − tan3 α π tan 3α = cot − θ = tan θ 2 2 1 − 3 tan α sin 4α = 4 sin α cos α − 8 sin3 α cos α Parity Identities cos 4α = 8 cos4 α − 8 cos2 α + 1 sin (−A) = − sin A 4 tan α − 4 tan3 α cos (−A) = cos A tan 4α = 1 − 6 tan2 α + tan4 α tan (−A) = − tan A n X n (n − i) π sin (nα) = cosi α sinn−i α sin csc (−A) = − csc A i 2 i=0 sec (−A) = sec A n X n (n − i) π cos (nα) = cosi α sinn−i α cos i 2 cot (−A) = − cot A i=0 4 Trigonometry Cram Sheet alltootechnical.tk 3.6 Power Reduction Definition 1 − cos 2θ sin2 θ = The two-argument form of the arctangent function, denoted 2 by tan−1 (y, x) gathers information on the signs of the in- puts in order to return the appropriate quadrant of the com- 1 + cos 2θ cos2 θ = puted angle.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us