Practical Machine Learning Neural Network Structure

Practical Machine Learning Neural Network Structure

Practical Machine Learning Neural Network Structure Sven Mayer Neuronal Network Structure TensorFlow Syntax for a 2-Layer Model model = tf.keras.Sequential() x = tf.keras.layers.InputLayer((400,), name = "InputLayer") model.add(x) x = tf.keras.layers.Dense(14, name = "HiddenLayer1", activation = 'relu') model.add(x) model.add(tf.keras.layers.Dense(8, name = "HiddenLayer2", activation='relu')) model.add(tf.keras.layers.Dense(2, name = "OutputLayer", activation = 'softmax')) 2 Sven Mayer Layers to Pick from tf.keras.layers.* § AbstractRNNCell § ConvLSTM2D § GlobalAveragePooling2D § MaxPool2D § SpatialDropout2D Activation Convolution1D GlobalAveragePooling3D MaxPool3D § § § § § SpatialDropout3D ActivityRegularization Convolution1DTranspose GlobalAvgPool1D MaxPooling1D § § § § § StackedRNNCells § Add § Convolution2D § GlobalAvgPool2D § MaxPooling2D § Subtract § AdditiveAttention § Convolution2DTranspose § GlobalAvgPool3D § MaxPooling3D § ThresholdedReLU § AlphaDropout § Convolution3D § GlobalMaxPool1D § Maximum § TimeDistributed § Attention § Convolution3DTranspose § GlobalMaxPool2D § Minimum § UpSampling1D § Average § Cropping1D § GlobalMaxPool3D § MultiHeadAttention § UpSampling2D § AveragePooling1D § Cropping2D § GlobalMaxPooling1D § Multiply § AveragePooling2D § Cropping3D § GlobalMaxPooling2D § PReLU § UpSampling3D § AveragePooling3D § Dense § GlobalMaxPooling3D § Permute § Wrapper § AvgPool1D § DenseFeatures § InputLayer § RNN § ZeroPadding1D § AvgPool2D § DepthwiseConv2D § InputSpec § ReLU § ZeroPadding2D AvgPool3D Dot LSTM RepeatVector § § § § § ZeroPadding3D § BatchNormalization § Dropout § LSTMCell § Reshape § Bidirectional § ELU § Lambda § SeparableConv1D § Concatenate § Embedding § Layer § SeparableConv2D § Conv1D § Flatten § LayerNormalization § SeparableConvolution1D § Conv1DTranspose § GRU § LeakyReLU § SeparableConvolution2D § Conv2D § GRUCell § LocallyConnected1D § SimpleRNN § Conv2DTranspose § GaussianDropout § LocallyConnected2D § SimpleRNNCell § Conv3D § GaussianNoise § Masking § Softmax § Conv3DTranspose § GlobalAveragePooling1D § MaxPool1D § SpatialDropout1D 3 Sven Mayer Neuronal Network Structure InputLayer HiddenLayer1 HiddenLayer2 OutputLayer InputLayer Dense Dense Dense ⋮ 2 8 400 14 4 Sven Mayer Neuronal Network Structure InputLayer HiddenLayer1 HiddenLayer2 OutputLayer InputLayer Dense Dense Dense Perceptron ⋮ 2 8 400 14 5 Sven Mayer Neuronal Networks What can be trained? Frank Rosenblatt. "The perceptron: a probabilistic model for information storage and organization in the brain." Psychological review 65, no. 6 (1958): 386. DOI: https://psycnet.apa.org/doi/10.1037/h0042519 6 Sven Mayer What is a Perceptron? Single-Layer Perceptron Bias Input � Output �! �! ∑ �(�) � ⋮ ⋮ Activation function �" �" Weights 7 Sven Mayer What can be trained? Single-Layer Perceptron Input Output � � = � Model 8 Sven Mayer What can be trained? Single-Layer Perceptron Input �+ � � = � ⋮ = � � ' � + � = � �, Model Output 9 Sven Mayer What can be trained? Single-Layer Perceptron Weights Input Bias �+ � � = � ⋮ = � � ' � + � = � �, Model Activation function Output 10 Sven Mayer What can be trained? Single-Layer Perceptron Weights Input Bias �+ � � = � ⋮ = � � ' � + � = � �, Model Activation function Output , = � + �-�- + � -.+ 11 Sven Mayer Activation Function Rectified Linear Unit (ReLU) � �� � > 0 � �� � ' � + � > 0 � � = max 0, � = 2 = 2 0 ��ℎ������ 0 ��ℎ������ 12 Sven Mayer Neuronal Network Structure InputLayer HiddenLayer1 HiddenLayer2 OutputLayer �! �! � ⋮ / ⋮ + � �" �" Perceptron ⋮ 2 8 400 14 13 Sven Mayer Neuronal Network Structure InputLayer HiddenLayer1 HiddenLayer2 OutputLayer Each neuron is � � with a independed � and � ⋮ 2 8 400 14 14 Sven Mayer Combining Perceptions Why is it all about fast matrix multiplication? � � / �! + �! = �! � � / �$ + �$ = �$ 2 8 �!,! �!,$ … �!,% �!,& � � � � ! + ! = ! �$,! �$,$ … �$,% �!,& �$ �$ �$ �!,! ⋯ �!,' �! �! �! � ⋮ ⋱ ⋮ ⋮ + ⋮ = ⋮ �",! ⋯ �",' �" �" �" 15 Sven Mayer Parameter ⋮ 2 8 400 14 § Layers 400, 14, 8, and 2 § => weights: 400 * 14 + 14 * 8 + 8 * 2 = 5,728 § => biases: 14 + 8 + 2 = 24 § => trainable parameter: 5,728 + 24 = 5,752 § Trainable parameters can raise fast § Layers 400, 100, 40, 2 => Parameter: 44,222 § (one model from the walkthough) 16 Sven Mayer Conclusion Neural Network Structure § Perceptron § Weights § Biases § Combining multiple Perceptron § Trainable Parameter § Activation Function (e.g. ReLu) 17 Sven Mayer License This file is licensed under the Creative Commons Attribution-Share Alike 4.0 (CC BY-SA) license: https://creativecommons.org/licenses/by-sa/4.0 Attribution: Sven Mayer Sven Mayer.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us