Herbaceous Biomass: State of the Art

Herbaceous Biomass: State of the Art

HERBACEOUS BIOMASS: STATE OF THE ART Kenneth J. Moore Department of Agronomy, Iowa State University Meeting the U.S. Departments of Agriculture and Energy’s goal of replacing 30 percent of transportation energy by 2030 with cellulosic biofuels will require development of highly productive energy crops. It is estimated that a billion-ton annual supply of biomass of all sources will be required to meet this goal, which represents a fi vefold increase over currently available biomass. Under one scenario, dedicated energy crops yielding an average of 8 dry tons/yr are projected to be planted on 55 million acres. Switchgrass (Panicum virgatum L.) is a perennial native grass that has received substantial interest as a potential energy crop due to its wide adaptation. However, it produces relatively low yields on productive soils and has other limitations related to seed dormancy and establishment. More recently, Miscanthus (Miscanthus × giganteus) has been touted as a potential energy crop. A warm-season perennial grass native to Southeastern Asia, it has relatively high yield potential when grown on productive soils. However, it is a sterile hybrid that must be propagated vegetatively and requires a few years to achieve maximum production. Both species have potential as dedicated energy crops, but require further improvement and development. Other crops with high potential for cellulosic energy are photoperiod-sensitive sorghum (Sorghum bicolor (L.) Moench) and corn (Zea mays L.) cultivars. Vegetative development of these cultivars occurs over a longer period in temperate regions and they produce little or no viable seed. A rational long-term approach will be required to develop alternative, high-yielding biomass crops specifi cally designed for energy and industrial uses. A signifi cant research eff ort is needed to identify alternative plant species that produce higher biomass yields and have desirable biomass traits, develop cultivated varieties of alternative species through genomics and plant breeding approaches, and develop appropriate crop management practices and systems for producing dedicated energy crops. KEY WORDS: biomass, bioenergy, switchgrass, Miscanthus, sorghum, corn *Contact information: Iowa State University, Department of Agronomy, 1571 Agronomy Hall, Ames, IA 50011; Phone: (515) 294-5482; Email: [email protected] *** INVITED SPEAKER *** Proceedings of the Short Rotation Crops International Conference GTR-NRS-P-31 39.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us