Density and Distribution Estimation

Density and Distribution Estimation

Density and Distribution Estimation Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 04-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 1 Copyright Copyright c 2017 by Nathaniel E. Helwig Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 2 Outline of Notes 1) PDFs and CDFs 3) Histogram Estimates Overview Overview Estimation problem Bins & breaks 2) Empirical CDFs 4) Kernel Density Estimation Overview KDE basics Examples Bandwidth selection Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 3 PDFs and CDFs PDFs and CDFs Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 4 PDFs and CDFs Overview Density Functions Suppose we have some variable X ∼ f (x) where f (x) is the probability density function (pdf) of X. Note that we have two requirements on f (x): f (x) ≥ 0 for all x 2 X , where X is the domain of X R X f (x)dx = 1 Example: normal distribution pdf has the form 2 1 − (x−µ) f (x) = p e 2σ2 σ 2π + which is well-defined for all x; µ 2 R and σ 2 R . Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 5 PDFs and CDFs Overview Standard Normal Distribution If X ∼ N(0; 1), then X follows a standard normal distribution: 1 2 f (x) = p e−x =2 (1) 2π 0.4 ) x ( 0.2 f 0.0 −4 −2 0 2 4 x Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 6 PDFs and CDFs Overview Probabilities and Distribution Functions (revisited) Probabilities relate to the area under the pdf: Z b P(a ≤ X ≤ b) = f (x)dx a (2) = F(b) − F(a) where Z x F(x) = f (u)du (3) −∞ is the cumulative distribution function (cdf). Note: F(x) = P(X ≤ x) =) 0 ≤ F(x) ≤ 1 Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 7 PDFs and CDFs Estimation Problem Problem of Interest n We want to estimate f (x) or F(x) from a sample of data fxi gi=1. We will discuss three different approaches: Empirical cumulative distribution functions (ecdf) Histogram estimates Kernel density estimates Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 8 Empirical Cumulative Distribution Function Empirical Cumulative Distribution Function Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 9 Empirical Cumulative Distribution Function Overview Empirical Cumulative Distribution Function 0 iid Suppose x = (x1;:::; xn) with xi ∼ F(x) for i 2 f1;:::; ng, and we want to estimate the cdf F. ^ The empirical cumulative distribution function (ecdf) Fn is defined as 1 F^ (x) = P^(X ≤ x) = Pn I n n i=1 fxi ≤xg where 1 if x ≤ x I = i fxi ≤xg 0 otherwise denotes an indicator function. Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 10 Empirical Cumulative Distribution Function Overview Some Properties of ECDFs The ecdf assigns probability 1=n to each value xi , which implies that 1 P^ (A) = Pn I n n i=1 fxi 2Ag for any set A in the sample space of X. For any fixed value x, we have that ^ E[Fn(x)] = F(x) ^ 1 V [Fn(x)] = n F(x)[1 − F(x)] As n ! 1 we have that ^ as sup jFn(x) − F(x)j ! 0 x2R which is the Glivenko-Cantelli theorem. Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 11 Empirical Cumulative Distribution Function Examples ECDF: Example 1 (Uniform Distribution) > set.seed(1) ecdf(x) > x = runif(20) ● 1.0 ● > xseq = seq(0,1,length=100) ● ● ● > Fhat = ecdf(x) 0.8 ● ● > plot(Fhat) ● ● 0.6 ● > lines(xseq,punif(xseq), ● Fn(x) ● ● 0.4 + col="blue",lwd=2) ● ● ● ● 0.2 ● ● ● 0.0 0.0 0.2 0.4 0.6 0.8 1.0 x ^ Note that Fn is a step-function estimate of F (with steps at xi values). Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 12 Empirical Cumulative Distribution Function Examples ECDF: Example 2 (Normal Distribution) > set.seed(1) ecdf(x) > x = rnorm(20) ● 1.0 ● > xseq = seq(-3,3,length=100) ● ● ● > Fhat = ecdf(x) 0.8 ● ● > plot(Fhat) ● ● 0.6 ● > lines(xseq,pnorm(xseq), ● Fn(x) ● ● 0.4 + col="blue",lwd=2) ● ● ● ● 0.2 ● ● ● 0.0 −2 −1 0 1 2 x ^ Note that Fn is a step-function estimate of F (with steps at xi values). Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 13 Empirical Cumulative Distribution Function Examples ECDF: Example 3 (Bivariate Distribution) Table 3.1 An Introduction to the Bootstrap (Efron & Tibshirani, 1993). School LSAT (y) GPA (z) School LSAT (y) GPA (z) 1 576 3.39 9 651 3.36 2 635 3.30 10 605 3.13 3 558 2.81 11 653 3.12 4 578 3.03 12 575 2.74 5 666 3.44 13 545 2.76 6 580 3.07 14 572 2.88 7 555 3.00 15 594 2.96 8 661 3.43 Defining A = f(y; z): 0 < y < 600; 0 < z < 3:00g, we have ^ P15 P15(A) = (1=15) i=1 If(yi ;zi )2Ag = 5=15 Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 14 Histogram Estimates Histogram Estimates Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 15 Histogram Estimates Overview Histogram Definition If f (x) is smooth, we have that P(x − h=2 < X < x + h=2) = F(x + h=2) − F(x − h=2) Z x+h=2 = f (z)dz ≈ hf (x) x−h=2 where h > 0 is a small (positive) scalar called the bin width. If F(x) were known, we could estimate f (x) using F(x + h=2) − F(x − h=2) ^f (x) = h but this isn’t practical (b/c if we know F we don’t need to estimate f ). Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 16 Histogram Estimates Overview Histogram Definition (continued) If F(x) is unknown we could estimate f (x) using Pn F^ (x + h=2) − F^ (x − h=2) If 2( − = ; + = ]g ^f (x) = n n = i=1 xi x h 2 x h 2 n h nh which uses previous formula with the ECDF in place of the CDF. More generally, we could estimate f (x) using Pn Ifx 2I g n ^f (x) = i=1 i j = j n nh nh m for all x 2 Ij = (cj − h=2; cj + h=2] where fcj gj=1 are chosen constants. Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 17 Histogram Estimates Bins and Breaks Histogram Bins/Breaks Different choices for m and h will produce different estimates of f (x). Freedman and Diaconis (1981) method: Set h = 2(IQR)n−1=3 where IQR = interquartile range Then divide range of data by h to determine m Sturges (1929) method (default in R’s hist function): Set m = dlog2(n) + 1e where dxe denotes ceiling function May oversmooth for non-normal data (i.e., use too few bins) Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 18 Histogram Estimates Bins and Breaks Histogram: Example 1 > par(mfrow=c(1,3)) > set.seed(1) > x = runif(20) > hist(x,main="Sturges") > hist(x,breaks="FD",main="FD") > hist(x,breaks="scott",main="scott") Sturges FD scott 6 10 10 5 8 8 4 6 6 3 Frequency Frequency Frequency 4 4 2 2 2 1 0 0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 x x x Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 19 Histogram Estimates Bins and Breaks Histogram: Example 2 > par(mfrow=c(1,3)) > set.seed(1) > x = rnorm(20) > hist(x,main="Sturges") > hist(x,breaks="FD",main="FD") > hist(x,breaks="scott",main="scott") Sturges FD scott 5 8 8 4 6 6 3 4 4 Frequency Frequency Frequency 2 2 2 1 0 0 0 −2 −1 0 1 2 −3 −2 −1 0 1 2 −3 −2 −1 0 1 2 x x x Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 20 Kernel Density Estimation Kernel Density Estimation Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 21 Kernel Density Estimation KDE Basics Kernel Function: Definition A kernel function K is a function such that. K (x) ≥ 0 for all −∞ < x < 1 K (−x) = K (x) R 1 −∞ K (x)dx = 1 In other words, K is a non-negative function that is symmetric around 0 and integrates to 1. Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 22 Kernel Density Estimation KDE Basics Kernel Function: Examples A simple example is the uniform (or box) kernel: 1 if − 1=2 ≤ x < 1=2 K (x) = 0 otherwise Another popular kernel function is the Normal kernel (pdf) with µ = 0 and σ fixed at some constant: 2 1 − x K (x) = p e 2σ2 σ 2π We could also use a triangular kernel function: K (x) = 1 − jxj Nathaniel E.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    43 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us