Carbon Foam Characterization

Carbon Foam Characterization

CARBON FOAM CHARACTERIZATION: SANDWICH FLEXURE, TENSILE AND SHEAR RESPONSE A Thesis by MELANIE DIANE SARZYNSKI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2003 Major Subject: Mechanical Engineering CARBON FOAM CHARACTERIZATION: SANDWICH FLEXURE, TENSILE AND SHEAR RESPONSE A Thesis by MELANIE DIANE SARZYNSKI Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: _________________________________ _________________________________ Ozden Ochoa Paul Roschke (Chair of Committee) (Member) _________________________________ _________________________________ Harry Hogan Dennis O’Neal (Member) (Head of Department) _________________________________ William Schneider (Member) December 2003 Major Subject: Mechanical Engineering iii ABSTRACT Carbon Foam Characterization: Sandwich Flexure, Tensile and Shear Response. (December 2003) Melanie Diane Sarzynski, B.S., Texas A&M University Chair of Advisory Committee: Dr. Ozden Ochoa The focus of this research is characterizing a new material system composed of carbon and graphite foams, which has potential in a wide variety of applications encompassing aerospace, military, offshore, power production and other commercial industries. The benefits of this new material include low cost, light weight, fire-resistance, good energy absorption, and thermal insulation or conduction as desired. The objective of this research is to explore the bulk material properties and failure modes of the carbon foam through experimental and computational analysis in order to provide a better understanding and assessment of the material for successful design in future applications. Experiments are conducted according to ASTM standards to determine the mechanical properties and failure modes of the carbon foam. Sandwich beams composed of open cell carbon foam cores and carbon-epoxy laminate face sheets are tested in the flexure condition using a four point setup. The primary failure mode is shear cracks developing in the carbon foam core at a critical axial strain value of 2,262 µε. In addition to flexure, the carbon foam is loaded under tensile and shear loads to determine the respective material moduli. Computational analysis is undertaken to further investigate the carbon foam’s failure modes and material characteristics in the sandwich beam configuration. Initial estimates are found using classical laminated plate theory and a linear finite element model. Poor results were obtained due to violation of assumptions used in both cases. Thus, an additional computational analysis iv incorporating three dimensional strain-displacement relationships into the finite element analysis is used. Also, a failure behavior pattern for the carbon foam core is included to simulate the unique failure progression of the carbon foam on a microstructure level. Results indicate that displacements, strains and stresses from the flexure experiments are closely predicted by this two parameter progressive damage model. The final computational model consisted of a bond line (interface) study to determine the source of the damage initiation, and it is concluded that damage initiates in the carbon foam, not at the bond line. v TABLE OF CONTENTS Page ABSTRACT........................................................................................................... iii TABLE OF CONTENTS ....................................................................................... v LIST OF FIGURES................................................................................................ vii LIST OF TABLES ................................................................................................. ix 1. INTRODUCTION.............................................................................................. 1 1.1 Overview ........................................................................................... 1 1.2 Literature Review.............................................................................. 4 1.3 Objective ........................................................................................... 9 2. EXPERIMENTS ................................................................................................ 10 2.1 Flexure Experiment ........................................................................... 10 2.1.1 Specimen Description .................................................. 11 2.1.2 Experimental Procedure ............................................... 15 2.1.3 Data Analysis ............................................................... 17 2.1.4 Experimental Flexure Results ...................................... 18 2.2 Tensile Experiment ........................................................................... 24 2.2.1 Specimen Description .................................................. 24 2.2.2 Experimental Procedure ............................................... 27 2.2.3 Data Analysis ............................................................... 28 2.2.4 Experimental Tensile Results....................................... 28 2.3 Iosipescu Experiment ........................................................................ 31 2.3.1 Specimen Description .................................................. 32 2.3.2 Experimental Procedure ............................................... 33 2.3.3 Data Analysis ............................................................... 33 2.3.4 Experimental Iosipescu Results ................................... 35 3. COMPUTATIONAL ANALYSIS..................................................................... 37 3.1 Classical Laminated Plate Theory..................................................... 37 vi Page 3.2 Finite Element Flexural Study........................................................... 44 3.2.1 Material Properties ....................................................... 44 3.2.2 Boundary Conditions and Loading............................... 45 3.2.3 Finite Element Analysis Results .................................. 46 3.3 Progressive Damage Flexure Study .................................................. 50 3.3.1 Material Properties ....................................................... 50 3.3.2 Boundary Conditions and Loading............................... 51 3.3.3 Progressive Damage Analysis Results ......................... 52 3.4 Bond Line (Interface) Study.............................................................. 57 3.4.1 Material Properties ....................................................... 58 3.4.2 Boundary Conditions and Loading............................... 59 3.4.3 Bond Line (Interface) Study Results............................ 60 4. CONCLUSIONS................................................................................................ 65 REFERENCES....................................................................................................... 67 VITA ...................................................................................................................... 70 vii LIST OF FIGURES FIGURE Page 1 Symmetric sandwich beam construction....................................................... 3 2 Truss structure formed by ligaments in pitch based carbon foams ............... 5 3 Cross sectional profile of truss ligaments in pitch based carbon foams........ 5 4 Filled in truss structure in coal based carbon foams [5]................................ 7 5 MTS load frame for flexure experiments...................................................... 10 6 Upper fixture consisting of roller load application for flexure experiments ................................................................................. 11 7 ASTM nomenclature for sandwich specimen ............................................... 12 8 Kinetic Composite face sheet lay-up............................................................. 13 9 APCM face sheet stacking (a) sequence one (b) sequence two .................... 13 10 Loading nomenclature for flexure experiments ............................................ 16 11 Typical load history plot from flexure experiments...................................... 19 12 Typical strain history plot from flexure experiments.................................... 19 13 Typical load versus strain plot from flexure experiments............................. 20 14 Damage initiation crack in sandwich specimens........................................... 21 15 Typical final failure of sandwich specimens................................................. 21 16 Axial strain at damage initiation during flexure experiments ....................... 22 17 ASTM nomenclature for tension specimens ................................................. 25 18 Direct grip fixture for tension experiments ................................................... 26 19 Pin tabbed fixture for tension experiments ................................................... 26 20 Load application in pin tabbed fixture .......................................................... 27 21 Typical final failure of directly gripped tension specimens.......................... 29 22 Example stress-strain plot obtained for a pin tabbed specimen .................... 30 23 Typical final failure of pin tabbed tension specimens................................... 30 24 Fixture used for Iosipescu experiments......................................................... 31 25 Shearing effect

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    79 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us