Stoner Wohlfarth Model for Magneto Anisotropy

Stoner Wohlfarth Model for Magneto Anisotropy

Stoner Wohlfarth Model for Magneto Anisotropy Xiaoshan Xu 2016/10/20 Levels of details for ferromagnets • Atomic level: • Exchange interaction that aligns atomic moments J푖푗푆푖 ⋅ 푆푗 • Micromagnetic level • Smear the individual atoms into continuum, see magnetization as a function of position (domain wall) • Domain level • Domains are separated by walls of zero thickness • Nonlinear level • Average magnetization of the entire magnet Magnetic anisotropy • Magneto-crystalline anisotropy • Microscopic • Single-ion • Symmetry of the atomic local environment • Shape anisotropy • Macrocopic • Shape of the magnet • Depolarization field Magnetic shape anisotropy N S N N S S N Repulsion, S high energy Attraction, low energy Polarize Depolarize each other, each other, Depolarization factor: low energy high energy 1 훼 퐷 = ln 훼 + 훼2 − 1 − 1 푧 훼2−1 훼2−1 퐷푥 + 퐷푦 + 퐷푧 = 1 퐿 훼 > 1 is the aspect ratio 푧 퐿푥 Spheroidal model for anisotropy Mathematically, both magneto-crystalline anisotropy and magnetic shape anisotropy can be described using the anisotropy tensor (symmetric matrix): 퐷푥푥 퐷푥푦 퐷푥푧 푫 = 퐷푥푦 퐷푦푦 퐷푦푧 퐷푥푧 퐷푦푧 퐷푧푧 The combined matrix can be diagonalized and along the principle axis, the tensor looks like 퐷11 0 0 푫 = 0 퐷22 0 . 0 0 퐷33 Geometrically, these matrices can be described using ellipsoids. A simplified case assumes the ellipsoid is spherioid. 퐷11 = 퐷22 Anisotropy energy: 2 2 2 2 퐸퐴 = −푀 ⋅ 푫 ⋅ 푀 = −M sin 휃퐷11 − 푀 cos 휃 퐷33 2 2 2 = −푀 sin 휃 퐷11 − 퐷33 − 푀 퐷22 2 2 퐸퐴 = 퐾 sin 휃 , 퐾 = −푀 퐷11 − 퐷33 Stoner Wohlfarth model: single domain, homogeneous magnetization Anisotropy energy: 푧Ԧ 2 2 푀 퐸퐴 = 퐾 sin 휃 , 퐾 = −푀 퐷11 − 퐷22 휃 퐻 휙 Zeeman energy: 퐸푍 = −퐻푀푐표푠(휙 − 휃) Total energy: 퐸 = 퐾 sin2 휃 + 퐻푀푐표푠(휙 − 휃) • The direction of the magnetization is a result of competition between the anisotropy energy and the Zeeman energy. • Since the magnetic anisotropy is fixed for a sample, we will study the dependence of 푀 on 퐻 and 휙. Stoner Wohlfarth model: critical field Total energy: 퐸 = 퐾 sin2 휃 + 퐻푀푐표푠(휙 − 휃) 푧Ԧ • Assuming a nonzero 휙 (here 15˚), we can plot the angular 푀 dependence of total energy. 휃 퐻 휙 퐻푀 = 퐸 • As field increases, the energy of the two minima become different. • One minimum eventually disappears at high field, corresponding to saturation magnetization. Stoner Wohlfarth model: random field angle example Total energy: 퐸 = 퐾 sin2 휃 + 퐻푀 cos(휃 − 휙) 푧Ԧ • At high enough field one minimum disappears. 푀 Mathematically, this corresponds to: 휕퐸 휕2퐸 퐻 = 0, = 0 휃 휕휃 휕2휃 휙 퐾 sin 2휃 + 퐻푀 sin 휙 − 휃 = 0 2퐾 cos 2휃 − 퐻푀 cos 휙 − 휃 = 0 Expand: 2퐾 퐻푀 sin 휃 cos 휃 + 퐻 cos 휃 − 퐻 sin 휃 = 0 = 푀 푥 푧 퐸 2퐾 cos2 휃 − sin2 휃 − (퐻 cos 휃 + 퐻 sin 휃) = 0 푀 푧 푥 퐻푥 = 퐻 sin 휃; 퐻푧 = 퐻 cos 휃 Stoner Wohlfarth model: random field angle example Total energy: 퐸 = 퐾 sin2 휃 + 퐻푀 cos(휃 − 휙) 푧Ԧ Expand: 2퐾 푀 sin 휃 cos 휃 + 퐻 cos 휃 − 퐻 sin 휃 = 0 푀 푥 푧 퐻 2퐾 휃 cos2 휃 − sin2 휃 − (퐻 cos 휃 + 퐻 sin 휃) = 0 푀 푧 푥 휙 2퐾 sin 휃 cos 휃 + 퐻 cos 휃 − 퐻 sin 휃 = 0 × sin 휃 푀 푥 푧 2퐾 cos2 휃 − sin2 휃 − (퐻 cos 휃 + 퐻 sin 휃) = 0 × cos 휃 푀 푧 푥 2퐾 0.51.5퐻 ≈0.35 퐻 퐻 = cos3 휃 퐶 퐶 푧 푀 2퐾 퐻 = − sin3 휃 푥 푀 2 2 2 2퐾 3 2퐾 퐻3 + 퐻3 = 퐻푐 = 푥 푧 푀 푀 Slonczewski asteroid Hysteresis Angular dependence (anisotropic MR) Conclusion • Stoner Wohlfarth model describes the magnetic anisotropy problem of a single domain particle • It can explain the ideal case hysteresis and angular dependence of magnetizations..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us