Hydrogen Oxidation Coupled to Sulfur Reduction in Deep-Sea Vent Bacteria. Francesco Smedile1, Ashley Grosche1, Sushmita Patwardh

Hydrogen Oxidation Coupled to Sulfur Reduction in Deep-Sea Vent Bacteria. Francesco Smedile1, Ashley Grosche1, Sushmita Patwardh

Hydrogen oxidation coupled to sulfur reduction in deep-sea vent bacteria. Francesco Smedile1, Ashley Grosche1, Sushmita Patwardhan1, Donato Giovannelli1,2, Ben Jelen1, Costantino Vetriani1 1Department of Biochemistry and Microbiology and Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA; [email protected] 2Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan Among deep-sea ecosystems, hydrothermal vents represent “relic” environments that resemble the early Earth. The genomes of modern vent microorganisms carry both ancestral and recently acquired genes providing excellent models to reconstruct how microbial metabolism co-evolved with our planet. Nautiliaceae (class Epsilonproteobacteria) and Desulfurobacteraceae (class Aquificae) are two key groups of bacteria in marine geothermal habitats. Although these bacteria are phylogenetically distant and colonize different temperature niches, they share key central metabolic characteristics: both fix CO2 and obtain energy coupling the oxidation of H2 to the reduction of elemental sulfur and/or nitrate. While nitrate reduction has been investigated, the sulfur reduction pathways have yet to be fully resolved. Focusing on the genomes of members of the Nautiliaceae, Cetia pacifica, Nautilia profundicola Caminibacter mediatlanticus, as well as the genomes of members of the Desulfurobacteraceae, Thermovibrio ammonificans strains HB-1 and HB-5, Desulfurobacterium thermolithotrophum and Phorcysia thermohydrogeniphila, we reported the distribution and phylogenetic reconstruction of four enzymes possibly involved in sulfur reduction. The genes encoding for polysulfide reductase and sulfide quinone oxidoreductase were identified in both the Nautiliaceae and the Desulfurobacteraceae, while the sulfhydrogenase II and the NAD/FAD-dependent reductase were identified in the Desulfurobacteraceae. Comparative genomic analyses were used to formulate hypotheses on how H2 oxidation can be coupled with sulfur reduction. Experimental work to test these hypotheses will help to understand the interconnection between carbon fixation and respiratory pathways in this chemosynthetic-driven environment. .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    1 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us