The Vertex Coloring Problem and Its Generalizations

The Vertex Coloring Problem and Its Generalizations

<p>`<br>UNIVERSITA DEGLI STUDI DI BOLOGNA </p><p>Dottorato di Ricerca in <br>Automatica e Ricerca Operativa </p><p>XIX Ciclo </p><p>The Vertex Coloring Problem and its Generalizations </p><p>Enrico Malaguti </p><p>A.A. 2003–2006 </p><p>Contents </p><p></p><ul style="display: flex;"><li style="flex:1">I</li><li style="flex:1">Vertex Coloring Problems </li><li style="flex:1">9</li></ul><p></p><p>CONTENTS </p><p></p><ul style="display: flex;"><li style="flex:1">II Fair&nbsp;Routing </li><li style="flex:1">93 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">CONTENTS </li><li style="flex:1">CONTENTS </li></ul><p></p><p>Acknowledgments </p><p>ACKNOWLEDGMENTS </p><p>Keywords </p><p>Keyworks </p><p>List of Figures </p><p>LIST OF FIGURES </p><p>List of Tables </p><p>LIST OF TABLES </p><p>Chapter 1 </p><p>Introduction </p><p>1.1 The&nbsp;Vertex Coloring Problem and its Generalizations </p><p>1</p><p><sup style="top: -0.3176em;">1</sup>Four are enough for any map, see Appel, Haken and Koch [10], the Four Color Conjecture was proposed by Francis Guthrie in 1852 </p><p>Introduction </p><p>∈</p><p>The Vertex Coloring Problem and its Generalizations </p><p>=1 </p><p>∀ ∈ </p><p>=1 </p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">∀</li><li style="flex:1">∈</li></ul><p></p><ul style="display: flex;"><li style="flex:1">∈ { </li><li style="flex:1">}</li></ul><p>}<br>∀ ∈ <br>∈ { </p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">∀</li></ul><p></p><p>=1 </p><p>Introduction </p><p>∈</p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">−</li><li style="flex:1">| ≥ </li></ul><p></p><ul style="display: flex;"><li style="flex:1">≥</li><li style="flex:1">∈</li></ul><p>∈</p><p>∈</p><p>≤<br>≤<br>∈ { ∈ { </p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">∈</li><li style="flex:1">∈ {&nbsp;− </li><li style="flex:1">− } </li></ul><p>∈∈<br>∈<br>∈</p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">}</li></ul><p>}</p><p>∈<br>∈</p><p>=1 </p><p>The Vertex Coloring Problem and its Generalizations </p><p></p><ul style="display: flex;"><li style="flex:1">≥</li><li style="flex:1">∈</li></ul><p>∈</p><p>=1 </p><p></p><ul style="display: flex;"><li style="flex:1">≤</li><li style="flex:1">∈</li></ul><p></p><ul style="display: flex;"><li style="flex:1">∈ { </li><li style="flex:1">}</li><li style="flex:1">∈</li></ul><p></p><p>Introduction </p><p>1.2 Fair&nbsp;Routing </p><p>••</p><p>Fair Routing </p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">∈</li></ul><p></p><p>Introduction </p><p>Part I </p><p>Vertex Coloring Problems </p><p>Chapter 2 </p><p>A Metaheuristic Approach for the Vertex Coloring Problem </p><p>1</p><p>2.1 Introduction </p><p><sup style="top: -0.3176em;">1</sup>The results of this chapter appear in [84]. </p><p>A Metaheuristic Approach for the Vertex Coloring Problem </p><p>2.1.1 The&nbsp;Heuristic Algorithm MMT </p><p>Introduction </p><p>S<sup style="top: -0.3301em;">0 </sup><br>S<sup style="top: -0.3301em;">0 </sup></p><p>S<sup style="top: -0.3301em;">0 </sup></p><p>∅</p><p>S<sup style="top: -0.3301em;">0 </sup><br>S<sup style="top: -0.3301em;">0 </sup></p><p>2.1.2 Initialization&nbsp;Step </p><p>A Metaheuristic Approach for the Vertex Coloring Problem </p><p>∅<br>| | </p><p>:</p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">\</li></ul><p></p><p>:</p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">\</li></ul><p></p><p>and </p><p></p><ul style="display: flex;"><li style="flex:1">(</li><li style="flex:1">)</li></ul><p></p><p>∪ {&nbsp;} </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>0<br>0</p><p>••<br>∈</p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>∈</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>∈</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>∈<br>••</p><p>2<br>2<br>2</p><p>PHASE 1: Evolutionary Algorithm </p><p>2<br>2</p><p>•</p><p>2<br>2</p><p>•</p><p>0</p><p>2<br>2<br>2</p><p>2.2 PHASE&nbsp;1: Evolutionary Algorithm </p><p>2.2.1 Tabu&nbsp;Search Algorithm </p><p>•••</p><p>0</p><p>∈</p><p>0<br>0</p><p>A Metaheuristic Approach for the Vertex Coloring Problem </p><p></p><ul style="display: flex;"><li style="flex:1">{</li><li style="flex:1">}</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">+1 </li></ul><p></p><p>0</p><p>∈<br>|<br>∈</p><p>+1 </p><p>0</p><p>|</p><p>+1 </p><p>∈</p><p>+1 </p><p>0</p><p>∈</p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">|</li></ul><p></p><p>+1 </p><p>•••••</p><p>∗</p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    140 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us