A taxonomy of the brain’s white matter: Twenty-one major tracts for the twenty-first century Daniel N. Bullock1, Elena A. Hayday2, Mark D. Grier2, *Wei Tang1,3, *Franco Pestilli4, *Sarah R. Heilbronner2 *These authors share senior author contribution 1. Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN USA 47405 2. Department of Neuroscience, University of Minnesota, Minneapolis, MN USA 55455 3. Department of Computer Science, Indiana University Bloomington, Bloomington, IN USA 47408 4. Department of Psychology, The University of Texas at Austin, Austin, TX USA 78712 Correspondence: Sarah R. Heilbronner, PhD 2-164 Jackson Hall 321 Church St SE Minneapolis, MN 55455 772-285-7021 [email protected] Acknowledgements: SRH was supported by NIH R01MH118257 (SRH); MDG was supported by NIDA T32DA007234 to P. Mermelstein (UMN); DNB was supported by NIMH 5T32MH103213-05 to W. Hetrick (IU); FP was supported by NSF IIS-1636893, NSF BCS-1734853, NSF IIS-1912270, NIH NIBIB 1-R01-EB029272- 01, and a Microsoft Investigator Fellowship. Conflicts: SRH has received teaching fees from Medtronic, Inc. Remaining authors have no conflicts to disclose. 1 Abstract The functional and computational properties of brain areas are determined, in large part, by their connectivity profiles. Advances in neuroimaging and network neuroscience allow us to characterize the human brain noninvasively and in vivo, but a comprehensive understanding of the human brain demands an account of the anatomy of brain connections. Long-range anatomical connections are instantiated by white matter and organized into tracts. Here, we aim to characterize the connections, morphology, traversal, and functions of the major white matter tracts in the brain. It is clear that there are significant discrepancies across different accounts of white matter tract anatomy, hindering our attempts to accurately map the connectivity of the human brain. We thoroughly synthesize accounts from multiple methods, but especially nonhuman primate tract-tracing and human diffusion tractography. Ultimately, we suggest that our synthesis provides an essential reference for neuroscientists and clinicians interested in brain connectivity and anatomy, allowing for the study of the association of white matter’s macro and microstructural properties with behavior, development, and disordered processes. 2 Table of Contents INTRODUCTION ..................................................................................................................................................................................................... 4 DEFINING WHITE MATTER ................................................................................................................................................................................ 5 WHAT IS A WHITE MATTER TRACT? ...................................................................................................................... 5 METHODS USED STUDY WHITE MATTER BUNDLES ................................................................................................. 7 Gross dissection. .............................................................................................................................................................................................................................. 7 Tract-tracing. ................................................................................................................................................................................................................................... 7 Diffusion-weighted MRI. .............................................................................................................................................................................................................. 8 Label-free imaging technologies. ......................................................................................................................................................................................... 10 INTERPRETING CONVERGENT AND DISCORDANT EVIDENCE ................................................................................. 10 WHITE MATTER TAXONOMY OF THE BRAIN ............................................................................................................................................. 12 CORPUS CALLOSUM .......................................................................................................................................... 13 ANTERIOR COMMISSURE ................................................................................................................................... 14 INTERNAL CAPSULE .......................................................................................................................................... 16 SUPERIOR LONGITUDINAL FASCICULUS .............................................................................................................. 18 MIDDLE LONGITUDINAL FASCICULUS .................................................................................................................. 20 ARCUATE FASCICULUS ...................................................................................................................................... 21 POSTERIOR ARCUATE FASCICULUS .................................................................................................................... 22 VERTICAL OCCIPITAL FASCICULUS ..................................................................................................................... 23 TEMPORO-PARIETAL CONNECTIONS TO THE SUPERIOR PARIETAL LOBULE ........................................................... 24 INFERIOR LONGITUDINAL FASCICULUS ............................................................................................................... 25 INFERIOR FRONTO-OCCIPITAL FASCICULUS ........................................................................................................ 26 CINGULUM BUNDLE ........................................................................................................................................... 27 UNCINATE FASCICULUS ..................................................................................................................................... 29 CORTICO-STRIATAL CONNECTIONS: MURATOFF’S BUNDLE AND THE EXTERNAL CAPSULE ..................................... 30 EXTREME CAPSULE .......................................................................................................................................... 31 SUPERIOR FRONTO-OCCIPITAL FASCICULUS ...................................................................................................... 32 OPTIC RADIATION ............................................................................................................................................. 32 FORNIX ............................................................................................................................................................ 33 MEDIAL FOREBRAIN BUNDLE ............................................................................................................................. 34 VENTRAL AMYGDALOFUGAL PATHWAY ............................................................................................................... 35 CONCLUSION ......................................................................................................................................................................................................... 36 REFERENCES ......................................................................................................................................................................................................... 38 3 Introduction The brain acts as an ensemble of distal computing centers located in both cortical and subcortical structures (Bullmore and Sporns, 2009). The functions and computational profiles of these brain areas are determined not only by the local properties but, importantly, by their connectivity profiles. Long range- connectivity is composed of ensembles of axonal projections wrapped in myelin, generally referred to as white bundles or tracts. Early on, these long-range tracts were thought to be a passive cabling system. The role of myelinated bundles in cognition and disease had been overlooked to ‘simply’ allow fast and reliable long-distance communication between brain areas. Modern measurements show that white matter axons and glia respond to experience, and that the tissue properties of the white matter are transformed during development and following training. The white matter pathways comprise a set of active wires, and the responses and properties of these wires predict human cognitive and emotional abilities in health and disease (Fields and Douglas Fields, 2008; Filley and Fields, 2016; Wandell, 2016). We can now confidently predict that to fully understand the functions of the human brain, neuroscientists will have to develop an account of the connections and tissue properties of these active wires. Indeed, it has been proposed that some brain disorders are best considered as disruptions of connectivity (Geschwind, 1965; Catani and Ffytche, 2005; Catani and Mesulam, 2008a). The recent expansion of network neuroscience and neuroimaging has brought renewed interest to the study of long-range white-matter bundles and brain connectivity. Yet, despite the theoretical expansion of our understanding of the brain, there
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages57 Page
-
File Size-