A Treatise on Quantum Clifford Algebras Contents

A Treatise on Quantum Clifford Algebras Contents

A Treatise on Quantum Clifford Algebras Habilitationsschrift Dr. Bertfried Fauser arXiv:math/0202059v1 [math.QA] 7 Feb 2002 Universitat¨ Konstanz Fachbereich Physik Fach M 678 78457 Konstanz January 25, 2002 To Dorothea Ida and Rudolf Eugen Fauser BERTFRIED FAUSER —UNIVERSITY OF KONSTANZ I ABSTRACT: Quantum Clifford Algebras (QCA), i.e. Clifford Hopf gebras based on bilinear forms of arbitrary symmetry, are treated in a broad sense. Five al- ternative constructions of QCAs are exhibited. Grade free Hopf gebraic product formulas are derived for meet and join of Graßmann-Cayley algebras including co-meet and co-join for Graßmann-Cayley co-gebras which are very efficient and may be used in Robotics, left and right contractions, left and right co-contractions, Clifford and co-Clifford products, etc. The Chevalley deformation, using a Clif- ford map, arises as a special case. We discuss Hopf algebra versus Hopf gebra, the latter emerging naturally from a bi-convolution. Antipode and crossing are consequences of the product and co-product structure tensors and not subjectable to a choice. A frequently used Kuperberg lemma is revisited necessitating the def- inition of non-local products and interacting Hopf gebras which are generically non-perturbative. A ‘spinorial’ generalization of the antipode is given. The non- existence of non-trivial integrals in low-dimensional Clifford co-gebras is shown. Generalized cliffordization is discussed which is based on non-exponentially gen- erated bilinear forms in general resulting in non unital, non-associative products. Reasonable assumptions lead to bilinear forms based on 2-cocycles. Cliffordiza- tion is used to derive time- and normal-ordered generating functionals for the Schwinger-Dyson hierarchies of non-linear spinor field theory and spinor electro- dynamics. The relation between the vacuum structure, the operator ordering, and the Hopf gebraic counit is discussed. QCAs are proposed as the natural language for (fermionic) quantum field theory. MSC2000: 16W30 Coalgebras, bialgebras, Hopf algebras; 15-02 Research exposition (monographs, survey articles); 15A66 Clifford algebras, spinors; 15A75 Exterior algebra, Grassmann algebra; 81T15 Perturbative methods of renormalization II A Treatise on Quantum Clifford Algebras Contents Abstract I Table of Contents II Preface VII Acknowledgement XII 1 Peano Space and Graßmann-Cayley Algebra 1 1.1 Normedspace–normedalgebra . ... 2 1.2 Hilbert space, quadratic space – classical Clifford algebra............. 3 1.3 Weyl space – symplectic Clifford algebras (Weyl algebras) ............ 4 1.4 Peanospace–Graßmann-Cayleyalgebras . ....... 5 1.4.1 Thebracket................................. 6 1.4.2 Thewedgeproduct–join ......................... 7 1.4.3 Thevee-product–meet .......................... 8 1.4.4 Meetandjoinforhyperplanesandco-vectors . ....... 11 2 Basics on Clifford algebras 15 2.1 Algebrasrecalled ................................ .. 15 2.2 Tensor algebra, Graßmann algebra, Quadratic forms . ............ 17 2.3 Clifford algebras by generators and relations . ............ 20 2.4 Cliffordalgebrasbyfactorization . ......... 22 2.5 Clifford algebras by deformation – Quantum Clifford algebras .......... 22 2.5.1 TheCliffordmap.............................. 23 2.5.2 Relation of Cℓ(V,g) and Cℓ(V, B) ..................... 25 2.6 Cliffordalgebrasofmultivectors . ........ 25 2.7 Cliffordalgebrasbycliffordization . .......... 27 2.8 Dottedandun-dottedbases . .... 29 2.8.1 Linearforms ................................ 29 2.8.2 Conjugation................................. 30 2.8.3 Reversion.................................. 30 III IV A Treatise on Quantum Clifford Algebras 3 Graphical calculi 33 3.1 TheKuperberggraphicalmethod . ..... 33 3.1.1 Originofthemethod ............................ 33 3.1.2 Tensoralgebra ............................... 34 3.1.3 Pictographicalnotationoftensoralgebra . ........ 37 3.1.4 Someparticulartensorsandtensorequations . ........ 38 3.1.5 Duality ................................... 41 3.1.6 Kuperberg’sLemma3.1. 41 3.2 Commutativediagramsversustangles . ....... 42 3.2.1 Definitions ................................. 42 3.2.2 Tanglesforknottheory. 45 3.2.3 Tanglesforconvolution. .. 47 4 Hopf algebras 49 4.1 Algebras....................................... 50 4.1.1 Definitions ................................. 50 4.1.2 A-modules ................................. 54 4.2 Co-algebras ..................................... 55 4.2.1 Definitions ................................. 55 4.2.2 C-comodules................................ 57 4.3 Bialgebras...................................... 58 4.3.1 Definitions ................................. 58 4.4 Hopfalgebrasi.e.antipodalbialgebras . .......... 61 4.4.1 Morphisms of connected co-algebras and connected algebras : group like convolution................................. 61 4.4.2 Hopfalgebradefinition. 63 5 Hopf gebras 65 5.1 Cupandcaptangles................................ 66 5.1.1 Evaluationandco-evaluation. .... 66 5.1.2 Scalarandco-scalarproducts. .... 68 5.1.3 Induced graded scalar and co-scalar products . ........ 68 5.2 Productco-productduality . ..... 70 5.2.1 Byevaluation................................ 70 5.2.2 Byscalarproducts ............................. 71 5.3 CliffordizationofRotaandStein . ....... 75 5.3.1 Cliffordizationofproducts . .... 75 5.3.2 Cliffordizationofco-products . ..... 77 5.3.3 Cliffordmapsforanygrade . 78 5.3.4 Inversionformulas . .. .. .. .. .. .. .. .. 79 5.4 Convolutionalgebra. .. .. .. .. .. .. .. .. ... 80 BERTFRIED FAUSER —UNIVERSITY OF KONSTANZ V 5.5 Crossingfromtheantipode . .... 82 5.6 Localversusnon-localproductsandco-products . ........... 85 5.6.1 KuperbergLemma3.2.revisited . ... 85 5.6.2 Interactingandnon-interactingHopfgebras . ......... 87 6 Integrals, meet, join, unipotents, and ‘spinorial’ antipode 91 6.1 Integrals....................................... 91 6.2 Meetandjoin .................................... 93 6.3 Crossings ...................................... 96 6.4 Convolutiveunipotents . .... 97 6.4.1 Convolutive’adjoint’. .. 98 6.4.2 Asquarerootoftheantipode. .. 99 6.4.3 Symmetrizedproductco-procducttangle . .. ..100 7 Generalized cliffordization 101 7.1 Linear forms on V × V ............................101 7.2 Properties of generalized Clifford products . ............103 V V 7.2.1 UnitsforgeneralizedCliffordproducts . .......104 7.2.2 Associativity of generalized Clifford products . ...........105 7.2.3 Commutation relations and generalized Clifford products. .107 7.2.4 Laplace expansion i.e. product co-product duality implies exponentially generatedbilinearforms . .108 7.3 Renormalization group and Z-pairing .......................109 7.3.1 Renormalizationgroup . 109 7.3.2 Renormalized time-ordered products as generalized Clifford products . 111 8 (Fermionic) quantum field theory and Clifford Hopf gebra 115 8.1 Fieldequations .................................. 116 8.2 Functionals ..................................... 117 8.3 Functionalequations . .. .. .. .. .. .. .. .. 121 8.4 Vertexrenormalization . .122 8.5 Time-andnormal-ordering . .123 8.5.1 Spinorfieldtheory .............................124 8.5.2 Spinorquantumelectrodynamics. .125 8.5.3 Renormalizedtime-orderedproducts. .. ..127 8.6 Onthevacuumstructure .. .. .. .. .. .. .. .. 128 8.6.1 One particle Fermi oscillator, U(1) ....................128 8.6.2 Two particle Fermi oscillator, U(2) ....................130 VI A Treatise on Quantum Clifford Algebras A CLIFFORDandBIGEBRApackagesforMaple 137 A.1 ComputeralgebraandMathematicalphysics . .........137 A.2 TheCLIFFORDPackage–rudimentsofversion5 . .. ..139 A.3 TheBIGEBRAPackage ..............................143 A.3.1 &cco –Cliffordco-product . .144 A.3.2 &gco –Graßmannco-product . .144 A.3.3 &gco d –dottedGraßmannco-product . 145 A.3.4 &gpl co –GraßmannPl¨uckerco-product . 146 A.3.5 &map –mapsproductsontotensorslots . 146 A.3.6 &t –tensorproduct.............................146 A.3.7 &v –vee-product,i.e.meet. .147 A.3.8 bracket –thePeanobracket. .148 A.3.9 contract –contractionoftensorslots. 148 A.3.10 define –Mapledefine,patched . .149 A.3.11 drop t –dropstensorsigns. .149 A.3.12 EV –evaluationmap ............................149 A.3.13 gantipode –Graßmannantipode . .149 A.3.14 gco unit –Graßmannco-unit . .150 A.3.15 gswitch –graded(i.e.Graßmann)switch . 151 A.3.16 help –mainhelp-pageofBIGEBRApackage . 151 A.3.17 init –initprocedure ...........................151 A.3.18 linop/linop2 – action of a linear operator on a Clifford polynom . 151 A.3.19 make BI Id – cup tangle need for &cco .................152 A.3.20 mapop/mapop2 –actionofanoperatoronatensorslot . 152 A.3.21 meet – same as &v (vee-product) . .152 A.3.22 pairing –Apairingw.r.t.abilinearform . 152 A.3.23 peek –extractatensorslot . .152 A.3.24 poke –insertatensorslot . .153 A.3.25 remove eq –removestautologicalequations . 153 A.3.26 switch –ungradedswitch . .153 A.3.27 tcollect –collectsw.r.t.thetensorbasis . 153 A.3.28 tsolve1 –tanglesolver .........................153 A.3.29 VERSION –showstheversionofthepackage. 154 A.3.30 type/tensorbasmonom –newMapletype . .154 A.3.31 type/tensormonom –newMapletype . .154 A.3.32 type/tensorpolynom –newMapletype . .155 Bibliography 156 BERTFRIED FAUSER —UNIVERSITY OF KONSTANZ VII “Al-gebra and Co-gebra are brother and sister“ Zbigniew Oziewicz Seht Ihr den Mond dort stehen er ist nur halb zu sehen und ist doch rund und schon¨ so sind gar manche Sachen die wir getrost belachen weil unsre Augen sie nicht sehn. Matthias Claudius Preface This ‘Habilitationsschrift’

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    182 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us