Fish Movement in the Red Sea and Implications for Marine Protected Area Design Thesis by Irene Antonina Salinas Akhmadeeva In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia April, 2021 2 EXAMINATION COMMITTEE PAGE The thesis of Irene Antonina Salinas Akhmadeeva is approved by the examination committee. Committee Chairperson: Prof. Michael L. Berumen Committee Co-Chair: Dr. Alison Green Committee Members: Dr. Darren Coker, Prof. Rusty Brainard 3 COPYRIGHT © April 2021 Irene Antonina Salinas Akhmadeeva All Rights Reserved 4 ABSTRACT Fish Movement in the Red Sea and Implications for Marine Protected Area Design Irene Antonina Salinas Akhmadeeva The Red Sea is valued for its biodiversity and the livelihoods it provides for many. It now faces overfishing, habitat degradation, and anthropogenic induced climate-change. Marine Protected Areas (MPAs) became a powerful management tool to protect vulnerable species and ecosystems, re-establish their balance, and enhance marine populations. For this, they need to be well designed and managed. There are 15 designated MPAs in the Red Sea but their level of enforcement is unclear. To design an MPA it is necessary to know if it will protect species of interest by considering their movement needs. In this thesis I aim at understanding fish movement in the Red Sea, specifically home range (HR) to inform MPA size designation. With not much empirical data available on HR for Red Sea fish, I used a Machine Learning (ML) classification model, trained with empirical literature HR measurements with Maximum Total Length (L Max), Aspect Ratio (AR) of the caudal fin, and Trophic Level as predictor variables. HR was classified into 5 categories: <.1 km, 0.1- 1.0 km, 2.0- 5.0 km, 5.0- 20 km, and >20 km. The model presents a 74.5% degree of accuracy. With it, I obtained the HR category for 337 Red Sea fish species. Having MPAs with a maximum linear dimension of at least 10km will meet the requirements of 90% of fish species evaluated in the model, which were small to medium size families (damselfishes, butterflyfishes, small wrasses, cardinalfishes, gobies and blennies). This percentage does not include larger species likely to move over much greater distances (10s, 100s or 1000s of km) (e.g., medium to large jacks, snappers,, groupers, sharks and rays). 60% of the Red Seas designated MPAs have the potential, if enforced as a No Take Area (NTA), to benefit more than 95% of reef fishes. However, larger MPAs will be required to protect more wide-ranging species. TRSP project in Al Wadj is proposing to close the entire SEZ to fishing. If they are successful in implementing and enforcing this fishing ban, TRSP will be the largest no take area in the Red Sea (~160 km long) that is likely to not only protect all of the species evaluated in the model, but also most wide-ranging species. Therefore, TRSP is not only likely to achieve and surpass its stated goal of increasing current fish biomass by 30%, but also to provide benefits to surrounding areas through the spillover of adults, juvenile and larvae to fished areas. 5 ACKNOWLEDGEMENTS I would like to thank my committee chair, Prof. Michael L. Berumen, my co-chair Dr. Alison Green, and my committee members, Dr. Darren Coker, Prof. Rusty Brainard for their guidance and support. I would like to thank as well Dr. Susana Carvahlo and Ute Langner from the Red Sea Research Center. My appreciation also goes to my KAUST family and my colleagues at KAUST, their continuous support was key to the development of my research. I also want to extend my gratitude to the KAUST University Library for always providing a suitable work space and for being the place where all of this thesis was written. Finally, my eternal gratitude to my parents who keep encouraging a supporting me from a distance. 6 TABLE OF CONTENTS EXAMINATION COMMITTEE PAGE .................................................................................................. 2 COPYRIGHT ................................................................................................................................................ 3 ABSTRACT ................................................................................................................................................... 4 ACKNOWLEDGEMENTS ........................................................................................................................ 5 TABLE OF CONTENTS ............................................................................................................................ 6 LIST OF ABBREVIATIONS ..................................................................................................................... 8 LIST OF ILLUSTRATIONS ...................................................................................................................... 9 LIST OF TABLES ..................................................................................................................................... 12 Chapter 1. INTRODUCTION ............................................................................................................... 13 1.1. Marine Protected Areas......................................................................................................... 13 1.2. Marine Protected Areas in the Red Sea ........................................................................... 16 1.3. Fish Movement for Marine Protected Area Design in the Red Sea ...................... 22 1.4. Machine Learning to Inform Fish Movement ............................................................... 25 1.5. Objectives .................................................................................................................................... 26 Chapter 2. METHODS ........................................................................................................................... 28 2.1. Red Sea Fish Home Range .................................................................................................... 28 2.1.1. Empirical Movement Training Data Set ...................................................................... 29 2.1.1.1. Response Variable ............................................................................................................ 29 2.1.1.2. Predictor Variables .......................................................................................................... 32 a. Size ................................................................................................................................................ 32 b. Aspect Ratio of the Caudal Fin ........................................................................................... 33 c. Trophic Level ............................................................................................................................ 34 2.1.2. Prediction model for Home Range ................................................................................ 34 2.1.2.1. Classification model ......................................................................................................... 35 2.1.3. Red Sea Fish Home Range Predictions ........................................................................ 36 2.2. Capabilities of Current Red Sea Marine Protected Areas ........................................ 37 2.3. Case Study: The Red Sea Project Potential .................................................................... 38 Chapter 3. RESULTS ............................................................................................................................. 40 3.1. Predicting Home Ranges of Red Sea Reef Fishes ........................................................ 40 3.1.1. Characteristics of Empirical Movement Training Data Set.................................. 40 3.1.1.1. Response Variable ............................................................................................................ 41 7 3.1.2. Prediction model for Home Range ................................................................................ 42 3.1.3 Red Sea Fish Home Range Predictions ......................................................................... 43 .................................................................................................................................................................. 48 3.2. Recommended sizes of NTAs for Red Sea Reef Fishes .............................................. 49 3.3. Capabilities of Current Red Sea Marine Protected Areas ........................................ 50 3.4. Case Study: The Red Sea Project Potential .................................................................... 54 Chapter 4. DISCUSSION ....................................................................................................................... 58 4.1. Red Sea Fish Home Range .................................................................................................... 58 4.2. Utility of Models and ML for Predicting Reef Fish Movement ............................... 59 4.3. Capabilities of Red Seas existing Marine Protected Areas ...................................... 63 4.4. Case Study: The Red Sea Project Potential .................................................................... 64 4.5. Recommendations and future directions ....................................................................... 66 Chapter 5. CONCLUSIONS .................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages93 Page
-
File Size-