2. Chern Connections and Chern Curvatures1

2. Chern Connections and Chern Curvatures1

1 2. Chern connections and Chern curvatures1 Let V be a complex vector space with dimC V = n. A hermitian metric h on V is h : V £ V ¡¡! C such that h(av; bu) = abh(v; u) h(a1v1 + a2v2; u) = a1h(v1; u) + a2h(v2; u) h(v; u) = h(u; v) h(u; u) > 0; u 6= 0 where v; v1; v2; u 2 V and a; b; a1; a2 2 C. If we ¯x a basis feig of V , and set hij = h(ei; ej) then ¤ ¤ ¤ ¤ h = hijei ­ ej 2 V ­ V ¤ ¤ ¤ ¤ where ei 2 V is the dual of ei and ei 2 V is the conjugate dual of ei, i.e. X ¤ ei ( ajej) = ai It is obvious that (hij) is a hermitian positive matrix. De¯nition 0.1. A complex vector bundle E is said to be hermitian if there is a positive de¯nite hermitian tensor h on E. r Let ' : EjU ¡¡! U £ C be a trivilization and e = (e1; ¢ ¢ ¢ ; er) be the corresponding frame. The r hermitian metric h is represented by a positive hermitian matrix (hij) 2 ¡(­; EndC ) such that hei(x); ej(x)i = hij(x); x 2 U Then hermitian metric on the chart (U; ') could be written as X ¤ ¤ h = hijei ­ ej For example, there are two charts (U; ') and (V; Ã). We set g = à ± '¡1 :(U \ V ) £ Cr ¡¡! (U \ V ) £ Cr and g is represented by matrix (gij). On U \ V , we have X X X ¡1 ¡1 ¡1 ¡1 ¡1 ei(x) = ' (x; "i) = à ± à ± ' (x; "i) = à (x; gij"j) = gijà (x; "j) = gije~j(x) j j For the metric X ~ hij = hei(x); ej(x)i = hgike~k(x); gjle~l(x)i = gikhklgjl k;l that is h = g ¢ h~ ¢ g¤ 12008.04.30 If there are some errors, please contact to: [email protected] 2 Example 0.2 (Fubini-Study metric on holomorphic tangent bundle T 1;0Pn). On the n @ trivialization of T P , for example U0 = fZ0 6= 0g, and basis of the ¯ber ei = , we could set @zi 2 Pn 2 @ log(1 + i=1 jzi j) hij(z) = hei(z); ej(z)i = @zi@zj Or X h(z) = hijdzi ­ dzj When E is a hermitian vector bundle, there is a natural sequilinear map Ap(M; E) £ Aq(M; E) ¡¡! Ap+q(M; C); (s; t) ¡¡!fs; tg P i P j In local coordinate, if s = σ ­ ei and t = ¿ ­ ej, X X i j i j fs; tg = σ ^ ¿ hei; eji = hijσ ^ ¿ i;j i;j De¯nition 0.3. A connection r on E is compatible with the hermitian structure of E, or a metric connection if for any s 2 Ap(M; E) and t 2 Aq(M; E) we have dfs; tg = frs; tg + (¡1)pfs; rtg Proposition 0.4. If r is a metric connection, then £¤ = ¡£ with respect to any trivialization. Proof. It is obvious that 0 = d2fs; tg = fr2s; tg + fs; r2tg =) £¤ = ¡£ In the local holomorphic coordinates fzig of M, we have @ p @ @ i fs; tg = fr s; tg + (¡1) fs; r tg @z @zi @zi If (E; r; h) is a Hermitian complex vector bundle with a metric connection, there is a decom- position r = r0 + r00, where r0 : Ap;q(M; E) ¡! Ap+1;q(M; E); r00 : Ap;q(M; E) ¡! Ap;q+1(M; E) under the decomposition M Al(M; E) = Ap;q(M; E); p+q=l and r0(f ^ s) = @f ^ s + (¡1)deg f f ^ r0s; r00(f ^ s) = @f ^ s + (¡1)deg f f ^ r00s: 3 i In the local holomorphic coordinates fz gi=1;¢¢¢ ;n on M, and local holomorphic frame fe®g®=1;¢¢¢ ;r, we set re = (¡¯ dzi + ¡¯ dzl) ­ e ® ®i ®l ¯ then r0e = ¡¯ dzi ­ e ; r00e = ¡¯ dzl ­ e ® ®i ¯ ® ®l ¯ The formal adjoint operators are denoted by ±0 : Ap+1;q(M; E) ¡! Ap;q(M; E); ±00 : Ap;q+1(M; E) ¡! Ap;q(M; E) with respect to the inner product induced by h. The Laplacian operators are de¯ned by ¢0 = r0±0 + ±0r0; ¢00 = r00±00 + ±00r00; ¢ = r± + ±r For the metric connection r on the Hermitian complex vector bundle (E; h), we have the decom- position of the curvature £ = £2;0 + £1;1 + £0;2 where £2;0 = r02 2 ¡(M; ¤2;0T ¤M ­ E¤ ­ E) £1;1 = r0r00 + r00r0 2 ¡(M; ¤1;1T ¤M ­ E¤ ­ E) £2;0 = r002 2 ¡(M; ¤0;2T ¤M ­ E¤ ­ E) i In the local holomorphic coordinates (z ) of M and coordinates (e®) of E, we can write £2;0 = R¯ dzi ^ dzj ­ e®¤ ­ e ; £0;2 = R¯ dzi ^ dzj ­ e®¤ ­ e ij® ¯ ij® ¯ £1;1 = R¯ dzi ^ dzj ­ e®¤ ­ e ij® ¯ Here and henceforth we sometimes adopt the Einstein convention for summation. On the holomorphic vector bundle E ¡!¼ M, we can de¯ne the @-operator: @ : Ap(M; E) ¡! Ap+1(M; E) p If we take the holomorphic frame e = (e1; ¢ ¢ ¢ ; en) for E over U, then write s 2 A (M; E) as X i s = σ ­ ei and set i @s = @σ ­ ei Proposition 0.5. The @-operator is well de¯ned. 0 0 0 Proof. If e = (e1; ¢ ¢ ¢ ; en) is any other holomorphic frame of E over U, with 0 ei = gijej i i0 0 i0 P j If s = σ ­ ei = σ ­ ei, then σ = j gjiσ then we have i0 0 j 0 j 0 j @s = @σ ­ ei = @(gjiσ ) ­ ei = gij@σ ­ ei = @σ ­ ej since gij is holomorphic. 4 Lemma 0.6. If E is a hermitian holomorphic vector bundle, then there exists a unique connection such that: i. r is compatible with the complex structure, i.e. r00 = @ ii. r is compatible with the hermitian structure, i.e. dfs; tg = frs; tg + (¡1)deg sfs; rtg for any s; t 2 A²(M; E). Proof. Let e = (e1; ¢ ¢ ¢ ; er) be a holomorphic frame for E under some trivialization, and let h®¯ = he®; e¯i. If the metric connection r exists, then its connection matrix ! must be type (1, 0), for the (0; 1) part of ! for the @ is zero, i.e. ¡¯ = 0. Then we have: ®l γ γ dh®¯ = dhe®; e¯i = !®hγ¯ + h®γ!¯ so we have γ γ γ¯ @h®¯ = !®hγ¯; i:e: !® = @h®¯h γ γ γ¯ @h®¯ = h®γ!¯; i:e: !® = @h®¯h If we set ! = h¡1 ¢@h, we know ! satis¯es the condition above. Then the connection is determined by !. Remark 0.7. Here h¡1 = (h®¯) which is the inverse of ht, that is X ®γ γ h®¯h = ±¯ Now we compute the curvature in the local coordinates. In the local holomorphic coordinates i fz gi=1;¢¢¢ ;n on M, and local holomorphic frame fe®g®=1;¢¢¢ ;r, we have X X £ = £¯ e®¤ ­ e = R¯ dzi ^ dzj ­ e®¤ ­ e 2 ¡(M; ¤1;1T ¤M ­ E¤ ­ E) ® ¯ ij® ¯ ®;¯ By the relation £ = d! ¡ ! ^ !, we get ¯ ¯ γ ¯ £® = d!® ¡ !® ^ !γ On the other hand @h !¯ = h¯γ ®γ dzi ® @zi we get @2h @h @h @h @h d!¯ = ¡h¯γ( ®γ ¡ h±¹ ®¹ ±γ )dzi ^ dzj + hγ± ®± h¯¸ γ¸ dzi ^ dzj ® @zi@zj @zi @zj @zi @zj and @h @h !γ ^ !¯ = hγ± ®± h¯¸ γ¸ dzi ^ dzj ® γ @zi @zj then @2h @h @h R¯ = ¡h¯γ( ®γ ¡ h±¹ ®¹ ±γ ): ij® @zi@zj @zi @zj where we use the formula ®¯ ®γ ±γ @h = ¡h @h±γh 5 Here use the formal expression, we have ! = h¡1 ¢ @h then d! = @(h¡1@h) + @h¡1 ^ @h For ! ^ ! = @h¡1 ^ @h Then £ = @(h¡1 ¢ @h) If r = 1, that is E is a line bundle, then £ = @@ log h Now we set R = Rγ h ij®¯ ij® γ¯ then @h @h h R = ¡ ®¯ + h±γ ®γ ±¯ ij®¯ @zi@zj @zi @zj Theorem 0.8 (Normal frames on holomorphic vector bundles). For every point x0 of X and every local holomorphic coordinates (z1; ¢ ¢ ¢ ; zn) at x0, there exists a holomorphic frame (e1; ¢ ¢ ¢ ; er) in a neighborhood ­ of x0 such that Xn 3 he¸(z); e¹(z)i = ±¸¹ ¡ Rjk¸¹zjzk + O(jzj ) j;k=1 E where the (Rjk¸¹) are the coe±cients of the Chern curvature tensor £x0 under the above local frame. Proof. By linear transformations. Lemma 0.9. If L is a holomorphic line bundle over a complex manifold M with trivialization ¤ functions 'i : LjUi ¡¡! Ui £ C and transition functions gij : Ui \ Uj ¡¡! C . + ¡1 2 (1) If ( ; )L is a hermitian metric on L and ¹j : Uj ¡¡! R is given by ¹j(p) = k'j (p; 1)k . Then 2 ¹j = ¹ijgijj ; on Ui \ Uj + (2) Any collections ¹i : Ui ¡¡! R satis¯es 2 ¹j = ¹ijgijj ; on Ui \ Uj de¯nes a hermitian metric on L. (3) The unique Chern connection on L has the curvature p £ = ¡ ¡1@@ log ¹i on Ui 6 Proof. (1) If p 2 Ui \ Uj, ¡1 2 ¡1 ¡1 2 ¹j(p) = khj (p; 1)k = khi ± hi ± hj (p; 1)k ¡1 2 2 ¡1 2 = khi (p; gij(p))k = jgij(p)j khi (p; 1)k 2 = ¹i(p)jgij(p)j ¡1 (2) If p 2 Ui and v1; v2 2 Lp, then vi = 'j (p; ti) for i = 1; 2. We can de¯ne a hermitian metric ( ; )L on L by (v1; v2)L = ¹i(p)t1t2 It is a well-de¯ned hermitian metric. In fact, if p 2 Ui \ Uj, by the de¯nition of line bundles, 0 0 there exists t1; t2 such that ¡1 ¡1 0 vi = 'i (p; ti) = 'j (p; ti) for i = 1; 2 where 0 ti = gij(p)ti By de¯nition 0 0 ¡2 (v1; v2)L = ¹j(p)t1t2 = ¹j(p)jgij(p)j t1t2 = ¹i(p)t1t2 So the hermitian metric is well-de¯ned on L.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us