Noether's Problem

Noether's Problem

Noether’s problem Asher Auel Department of Mathematics Yale University Colloquium Dartmouth College May 11, 2018 Symmetric polynomials x + y xy x2 + y 2 x2y + xy 2 x3 + y 3 x4y 4 + 2x5y 2 + 2x2y 5 Symmetric polynomials x + y xy x2 + y 2 = (x + y)2 − 2xy x2y + xy 2 = (x + y)xy x3 + y 3 = (x + y)3 − 3x2y − 3xy 2 x4y 4 + 2x5y 2 + 2x2y 5 = (xy)4 + 2(xy)2(x3 + y 3) Symmetric polynomials x + y xy x2 + y 2 = (x + y)2 − 2xy x2y + xy 2 = (x + y)xy x3 + y 3 = (x + y)3 − 3(x2y + 3xy 2) x4y 4 + 2x5y 2 + 2x2y 5 = (xy)4 + 2(xy)2(x3 + y 3) Symmetric polynomials x + y xy x2 + y 2 = (x + y)2 − 2xy x2y + xy 2 = (x + y)xy x3 + y 3 = (x + y)3 − 3(x + y)xy x4y 4 + 2x5y 2 + 2x2y 5 = (xy)4 + 2(xy)2(x + y)3 − 3(x + y)xy Symmetric polynomials x + y = σ1 xy = σ2 2 2 2 x + y = σ1 − 2σ2 2 2 x y + xy = σ1σ2 3 3 3 x + y = σ1 − 3σ1σ2 4 4 5 2 2 5 4 3 2 3 x y + 2x y + 2x y = σ2 + 2σ1σ2 − 6σ1σ2 Fundamental Theorem Newton 1665, Waring 1770, Gauss 1815 Theorem. Any symmetric polynomial in variables x1;:::; xn can be uniquely expressed as a polynomial in the elementary symmetric polynomials σ1 = x1 + x2 + ··· + xn σ2 = x1x2 + x1x3 + ··· + xn−1xn . X σk = xi1 ··· xik 1≤i1<···<ik ≤n . σn = x1x2 ··· xn Newton–Girard formulas Girard 1629, Newton 1666 k k k pk = x1 + x2 + ··· + xn power sums p1 = σ1 2 p2 = σ1 − 2σ2 3 p3 = σ1 − 3σ1σ2 + 3σ3 4 2 2 p4 = σ1 − 4σ1σ2 + 2σ2 + 4σ1σ3 − 4σ4 0 1 σ1 1 0 ··· 0 B2σ2 σ1 1 ··· 0 C B C B3σ σ σ ··· 0 C pk = det B 3 2 1 C B . .. C @ . 1 A kσk σk−1 σk−2 ··· σ1 0 1 1 0 ··· 0 01 B−2 1 1 ··· 0 0C B C B .. C B 0 −1 1 . 1 0C B C B . .. C @ . 1 1A 0 0 0 · · · −1 1 Example. 2; 1; 3; 4; 7; 11; 18; 29; 47; 76; 123; 199;::: Ln = Ln−1 + Ln−2 Lucas numbers p p 1 + 5 1 − 5 φ = ; φ¯ = roots of x2 − x − 1 2 2 n n Ln = φ +φ¯ = det Vieta’a formula α1; α2; : : : ; αn roots of monic polynomial f (x) n n−1 n−1 n f (x) = x − σ1x + σ2x − · · · + (−1) σn 0 1 1 0 ··· 0 01 B−2 1 1 ··· 0 0C B C B .. C B 0 −1 1 . 1 0C B C B . .. C @ . 1 1A 0 0 0 · · · −1 1 Ln = Ln−1 + Ln−2 Lucas numbers p p 1 + 5 1 − 5 φ = ; φ¯ = roots of x2 − x − 1 2 2 n n Ln = φ +φ¯ = det Vieta’a formula α1; α2; : : : ; αn roots of monic polynomial f (x) n n−1 n−1 n f (x) = x − σ1x + σ2x − · · · + (−1) σn Example. 2; 1; 3; 4; 7; 11; 18; 29; 47; 76; 123; 199;::: 0 1 1 0 ··· 0 01 B−2 1 1 ··· 0 0C B C B .. C B 0 −1 1 . 1 0C B C B . .. C @ . 1 1A 0 0 0 · · · −1 1 Vieta’a formula α1; α2; : : : ; αn roots of monic polynomial f (x) n n−1 n−1 n f (x) = x − σ1x + σ2x − · · · + (−1) σn Example. 2; 1; 3; 4; 7; 11; 18; 29; 47; 76; 123; 199;::: Ln = Ln−1 + Ln−2 Lucas numbers p p 1 + 5 1 − 5 φ = ; φ¯ = roots of x2 − x − 1 2 2 0 1 σ1 1 0 ··· 0 0 B2σ σ 1 ··· 0 0 C B 2 1 C n ¯n B .. C Ln = φ +φ = det B3σ3 σ2 σ1 . 1 0 C B C B . .. C @ . σ1 1 A kσk σk−1 σk−2 ··· σ2 σ1 Vieta’a formula α1; α2; : : : ; αn roots of monic polynomial f (x) n n−1 n−1 n f (x) = x − σ1x + σ2x − · · · + (−1) σn Example. 2; 1; 3; 4; 7; 11; 18; 29; 47; 76; 123; 199;::: Ln = Ln−1 + Ln−2 Lucas numbers p p 1 + 5 1 − 5 φ = ; φ¯ = roots of x2 − x − 1 2 2 0 1 1 0 ··· 0 01 B−2 1 1 ··· 0 0C B C n ¯n B .. C Ln = φ +φ = det B 0 −1 1 . 1 0C B C B . .. C @ . 1 1A 0 0 0 · · · −1 1 Additive symmetric polynomial bases partition λ = (λ1; : : : ; λr ) of n monomial symmetric polynomials X λ1 λr mλ = xτ(1) ··· xτ(r) τ2Sr Schur polynomials X t1 tn sλ = x1 ··· xn T tableau λ Sn Fundamental Theorem. C[x1; x2;:::; xn] = C[σ1; σ2; : : : ; σn] Sn C(x1; x2;:::; xn) = C(σ1; σ2; : : : ; σn) Ring of symmetric polynomials Field of symmetric rational functions Algebra Sn symmetric group of permutations of f1; 2;:::; ng C[x1; x2;:::; xn] ring of polynomials in variables x1; x2;:::; xn Sn acts on C[x1; x2;:::; xn] by permuting the variables 2 2 Example. (1234) · (x1x2 + x3 ) = x2x3 + x4 Algebra Sn symmetric group of permutations of f1; 2;:::; ng C[x1; x2;:::; xn] ring of polynomials in variables x1; x2;:::; xn Sn acts on C[x1; x2;:::; xn] by permuting the variables 2 2 Example. (1234) · (x1x2 + x3 ) = x2x3 + x4 Sn Fundamental Theorem. C[x1; x2;:::; xn] = C[σ1; σ2; : : : ; σn] Sn C(x1; x2;:::; xn) = C(σ1; σ2; : : : ; σn) Ring of symmetric polynomials Field of symmetric rational functions Algebra Fundamental Theorem. Any symmetric polynomial can be uniquely expressed as a polynomial in the elementary symmetric polynomials. uniqueness () σ1; σ2; : : : ; σn algebraically independent Sn () C(x1; x2;:::; xn) = C(σ1; σ2; : : : ; σn) purely transcendental over C 4 7 8 5 3 1 9 2 6 even Parity of the number of swaps is an invariant of a permutation An Definition. Ring of alternating polynomials C[x1; x2;:::; xn] An Field of alternating rational functions C(x1; x2;:::; xn) Alternating polynomials An ⊂ Sn subgroups of even permutations Example. 1 2 3 4 5 6 7 8 9 4 7 8 5 3 1 9 2 6 even Parity of the number of swaps is an invariant of a permutation An Definition. Ring of alternating polynomials C[x1; x2;:::; xn] An Field of alternating rational functions C(x1; x2;:::; xn) Alternating polynomials An ⊂ Sn subgroups of even permutations Example. 4 7 8 5 3 1 9 2 6 4 7 8 5 3 1 9 2 6 even Parity of the number of swaps is an invariant of a permutation An Definition. Ring of alternating polynomials C[x1; x2;:::; xn] An Field of alternating rational functions C(x1; x2;:::; xn) Alternating polynomials An ⊂ Sn subgroups of even permutations Example. Bubble sort 4 75831926 1 4 7 8 5 3 1 9 2 6 even Parity of the number of swaps is an invariant of a permutation An Definition. Ring of alternating polynomials C[x1; x2;:::; xn] An Field of alternating rational functions C(x1; x2;:::; xn) Alternating polynomials An ⊂ Sn subgroups of even permutations Example. Bubble sort 4 7 5381926 2 4 7 8 5 3 1 9 2 6 even Parity of the number of swaps is an invariant of a permutation An Definition. Ring of alternating polynomials C[x1; x2;:::; xn] An Field of alternating rational functions C(x1; x2;:::; xn) Alternating polynomials An ⊂ Sn subgroups of even permutations Example. Bubble sort 4 7 5 318926 3 4 7 8 5 3 1 9 2 6 even Parity of the number of swaps is an invariant of a permutation An Definition. Ring of alternating polynomials C[x1; x2;:::; xn] An Field of alternating rational functions C(x1; x2;:::; xn) Alternating polynomials An ⊂ Sn subgroups of even permutations Example. Bubble sort 4 7 5 3 1 8296 4 4 7 8 5 3 1 9 2 6 even Parity of the number of swaps is an invariant of a permutation An Definition. Ring of alternating polynomials C[x1; x2;:::; xn] An Field of alternating rational functions C(x1; x2;:::; xn) Alternating polynomials An ⊂ Sn subgroups of even permutations Example. Bubble sort 4 7 5 3 1 8 2695 4 7 8 5 3 1 9 2 6 even Parity of the number of swaps is an invariant of a permutation An Definition. Ring of alternating polynomials C[x1; x2;:::; xn] An Field of alternating rational functions C(x1; x2;:::; xn) Alternating polynomials An ⊂ Sn subgroups of even permutations Example. Bubble sort 457318269 6 4 7 8 5 3 1 9 2 6 even Parity of the number of swaps is an invariant of a permutation An Definition. Ring of alternating polynomials C[x1; x2;:::; xn] An Field of alternating rational functions C(x1; x2;:::; xn) Alternating polynomials An ⊂ Sn subgroups of even permutations Example. Bubble sort 4 53718269 7 4 7 8 5 3 1 9 2 6 even Parity of the number of swaps is an invariant of a permutation An Definition. Ring of alternating polynomials C[x1; x2;:::; xn] An Field of alternating rational functions C(x1; x2;:::; xn) Alternating polynomials An ⊂ Sn subgroups of even permutations Example. Bubble sort 4 5 3178269 8 4 7 8 5 3 1 9 2 6 even Parity of the number of swaps is an invariant of a permutation An Definition. Ring of alternating polynomials C[x1; x2;:::; xn] An Field of alternating rational functions C(x1; x2;:::; xn) Alternating polynomials An ⊂ Sn subgroups of even permutations Example.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    82 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us