Quantization of Scalar Field

Quantization of Scalar Field

Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of complex scalar field 4 Propagator of Klein-Gordon field 5 Homework Wei Wang(SJTU) Lectures on QFT 2017.10.12 2 / 41 Free classical field Klein-Gordon Spin-0, scalar Klein-Gordon equation µ 2 @µ@ φ + m φ = 0 Dirac 1 Spin- 2 , spinor Dirac equation i@= − m = 0 Maxwell Spin-1, vector Maxwell equation µν µν @µF = 0;@µF~ = 0: Gravitational field Wei Wang(SJTU) Lectures on QFT 2017.10.12 3 / 41 Klein-Gordon field scalar field, satisfies Klein-Gordon equation µ 2 (@ @µ + m )φ(x) = 0: Lagrangian 1 L = @ φ∂µφ − m2φ2 2 µ Euler-Lagrange equation @L @L @µ − = 0: @(@µφ) @φ gives Klein-Gordon equation. Wei Wang(SJTU) Lectures on QFT 2017.10.12 4 / 41 From classical mechanics to quantum mechanics Mechanics: Newtonian, Lagrangian and Hamiltonian Newtonian: differential equations in Cartesian coordinate system. Lagrangian: Principle of stationary action δS = δ R dtL = 0. Lagrangian L = T − V . Euler-Lagrangian equation d @L @L − = 0: dt @q_ @q Wei Wang(SJTU) Lectures on QFT 2017.10.12 5 / 41 Hamiltonian mechanics Generalized coordinates: q ; conjugate momentum: p = @L i j @qj Hamiltonian: X H = q_i pi − L i Hamilton equations @H p_ = − ; @q @H q_ = : @p Time evolution df @f = + ff; Hg: dt @t where f:::g is the Poisson bracket. Wei Wang(SJTU) Lectures on QFT 2017.10.12 6 / 41 Quantum Mechanics Quantum mechanics Hamiltonian: Canonical quantization Lagrangian: Path integral Canonical quantization Observables: operators commutation relations [qi; qj] = [pi; pj] = 0; [qi; pj] = i~δij Poisson bracket ! commutation bracket: f:::g ! 1 [:::] i~ Time evolution (Heisenberg equation) q_i = i[H; qi]; p_i = i[H; pi]: For any observable F (q; p), F_ (q; p) = i[H; F ]: Wei Wang(SJTU) Lectures on QFT 2017.10.12 7 / 41 1D harmonic oscillator (classical) Lagrangian r ! 1 m!2 K L = mq_2 − q2; ! = 2 2 m Canonical momentum @L p = = mq:_ @q_ Hamiltonian 1 H = pq_ − L = (p2 + m2!2q2) 2m Hamilton equation @H p_ = − = −m!2q; @q @H p q_ = = : @p m Wei Wang(SJTU) Lectures on QFT 2017.10.12 8 / 41 1D harmonic oscillator (quantum) equal-time commutation relation [q; p] = i; [q; q] = [p; p] = 0 equation of motion p_ = i[H; p] = −Kq; p q_ = i[H; q] = : m raising and lowering operators r 1 r 1 a = (p − im!q); ay = (p + im!q): 2m! 2m! [a; ay] = 1; [a; a] = 0; [ay; ay] = 0: Wei Wang(SJTU) Lectures on QFT 2017.10.12 9 / 41 particle-number representation Hamiltonian: 1 H = !(aay + ) 2 particle-number operator 1 N = aay;H = !(N + ); 2 1 Njni = njni;Hjni = (n + )!jni 2 Vacuum state: j0i ! Nj0i = 0;Hj0i = j0i: 2 Creation and annihilation p ayjni = n + 1jn + 1i; p ajni = njn − 1i: Wei Wang(SJTU) Lectures on QFT 2017.10.12 10 / 41 From mechanics to field theory Mechanics: finite degree of freedom. field: infinite (continuum) degree of freedom. canonical coordinates: x ! φ(~x;t). canonical momentum: p ! π(~x;t) = @L(φ,∂µφ) @φ_(~x;t) Hamiltonian: H = R d3xH(π(~x;t); φ(~x;t)) = R d3x(πφ_ − L), H: Hamiltonian density. Wei Wang(SJTU) Lectures on QFT 2017.10.12 11 / 41 Analogy between mechanics and field theory Discretization: Z 1 3 φi(t) = d xφ(~x;t) ∆Vi (∆Vi) φi(t) is the average value in ∆Vi. Continuum ! denumerable. Lagrangian: Z 3 X L = d xL(φ(x);@µφ(x)) ! ∆ViL¯i(φi(t); φ_i(t); φi±s(t); ··· ): i Z 1 3 @ φ_i(t) = d x φ(x; t): ∆Vi (∆Vi) @t Wei Wang(SJTU) Lectures on QFT 2017.10.12 12 / 41 Analogy between mechanics and field theory canonical momentum: @L @L¯i pi(t) = = ∆Vi ≡ ∆Viπi(t): @φ_i(t) @φ_i(t) Hamiltonian X X H = piφ_i − L = ∆Vi(πiφ_i − L¯i): i i Canonical quantization [φi(t); pi(t)] = iδij; [φi(t); φj(t)] = [pi(t); pj(t)] = 0: Heisenberg equation φ_i(t) = i[H; φi(t)]; p_i(t) = i[H; pi(t)]: Wei Wang(SJTU) Lectures on QFT 2017.10.12 13 / 41 Continuum limit δ When ∆V ! 0, ij ! δ3(~x − ~x0) i ∆Vi commutation relation 0 3 0 [φ(t; ~x); π(t; ~x )] = i~δ (~x − ~x ); (~ = 1) [φ(t; ~x); φ(t; ~x0)] = [π(t; ~x); π(t; ~x0)] = 0; Heisenberg equation (equation of motion) φ_(~x;t) = i[H; φ(~x;t)]; π_ (~x;t) = i[H; π(~x;t)]: For any physical quantity F , F_ = i[H; F ]: Wei Wang(SJTU) Lectures on QFT 2017.10.12 14 / 41 Quantization of real scalar field Lagrangian density 1 1 L = @µφ∂ φ − m2φ2: 2 µ 2 Euler-Lagrange equation (Klein-Gordon equation) µ 2 (@ @µ + m )φ(x) = 0 canonical momentum π(x) = @L = φ_(x) @φ_(x) Hamiltonian density 1 h i 1 H = π@ φ − L = (@ φ)2 + (r~ φ)2 + m2φ2: 0 2 0 2 Wei Wang(SJTU) Lectures on QFT 2017.10.12 15 / 41 quantization of real scalar field Introducing commutation relation for φ and π [φ(~x;t); π(~x0; t)] = iδ3(~x − ~x0); [φ(~x;t); φ(~x0; t)] = [π(~x;t); π(~x0; t)] = 0 Heisenberg equation φ_(~x;t) = i[H; φ(~x;t)]; π_ (~x;t) = i[H; π(~x;t)]: Wei Wang(SJTU) Lectures on QFT 2017.10.12 16 / 41 Mode expansion Plane-wave expansion Z 3 d k ~ −ik·x y ~ ik·x φ(x) = 3 [a(k)e + a (k)e ]; (2π) 2!k p 2 2 with !k = ~k + m . For π(x; t), we have Z 3 _ d k ~ −ik·x y ~ ik·x π(x) = φ(x) = 3 (−i!k)[a(k)e − a (k)e ]; (2π) 2!k a and ay can be expressed by the field operator Z Z 3 ik·x ! y 3 −ik·x ! a(~k) = i d xe @0 φ(x; t); a (~k) = −i d xe @ 0φ(x; t) Wei Wang(SJTU) Lectures on QFT 2017.10.12 17 / 41 Commutation relation for a and ay y 0 3 3 0 [a(~k); a (k~ )] = (2π) 2!kδ (~k − ~k ); [a(~k); a(k~0)] = [ay(~k); ay(k~0)] = 0: Hamiltonian 1 Z H = d3x[π(x; t)2 + jrφ(x; t)j2 + m2φ(x; t)2] 2 Z 3 1 d k ~ y ~ y ~ ~ = 3 !k[a(k)a (k) + a (k)a(k)]: 2 (2π) 2!k Momentum Z P = − d3xπ(x; t)rφ(x; t) Z 3 1 d k ~ ~ y ~ y ~ ~ = 3 k[a(k)a (k) + a (k)a(k)] 2 (2π) 2!k Wei Wang(SJTU) Lectures on QFT 2017.10.12 18 / 41 vacuum zero point energy Z 3 1 d k ~ y ~ y ~ ~ H = 3 !k[a(k)a (k) + a (k)a(k)] 2 (2π) 2!k Z 3 d k y ~ ~ !k 3 = 3 [!ka (k)a(k) + δ (0)] (2π) 2!k 2 Z 3 d k y ~ ~ V = 3 !k a (k)a(k) + 3 : (2π) 2!k 2(2π) Z d3k V h0jHj0i = 3 !k 3 : (2π) 2!k 2(2π) The vacuum is not empty! Infinity! The infinity can be dropped (no worry). Wei Wang(SJTU) Lectures on QFT 2017.10.12 19 / 41 Normal ordering Operator ordering in quantum theory: normal (Wick), anti-normal, Weyl-Wigner,... Normal ordering : O(a; ay): ,move all ay(k) to the left of a(k). e.g., : a(~k)ay(k) :=: ay(~k)a(k) := ay(~k)a(~k): zero point energy is dropped h0j : O(a; ay): j0i = 0: Wei Wang(SJTU) Lectures on QFT 2017.10.12 20 / 41 Hamiltonian and particle number operator Define Hamiltonian by normal ordering 1 Z d3k H = ! :[a(~k)ay(~k) + ay(~k)a(~k)] : 3 k 2 (2π) 2!k Z d3k = ! ay(~k)a(~k) 3 k (2π) 2!k Momentum Z d3k P~ = ~kay(~k)a(~k): 3 (2π) 2!k four-momentum Z d3k P µ = kµay(~k)a(~k): 3 (2π) 2!k Particle number operator Z d3k N = ay(~k)a(~k): [N; P µ] = 0 for free field. 2 (2π) 2!k Wei Wang(SJTU) Lectures on QFT 2017.10.12 21 / 41 Fock space and particle interpretation Basis: all the eigenstate of N. j~ki = ay(~k)j0i; y y j~k1;~k2i = a (~k1)a (~k2)j0i; . vacuum state a(~k)j0i = 0; h0j0i = 1: y One-particle state: Pµj~ki = Pµa (~k)j0i = kµj~ki: With energy ~ 2 2 2 momentum relation jkj + m = !k. normalization 0 3 3 0 h~k j~ki = (2π) 2!kδ (~k − ~k ) Wei Wang(SJTU) Lectures on QFT 2017.10.12 22 / 41 Quantization for many real scalar fields n scalar fields φr(x; t); (r = 1; ··· ; n) @L π(x; t)r = @φ_r(x; t) Hamiltonian n X H(πr; ··· ; φr; ··· ) = πrφ_r − L; r=1 Z H = d3xH: Commutation relation 0 3 0 [φr(x ; t); πs(x; t)] = iδrsδ (x − x ); 0 0 [φr(x; t); φs(x ; t)] = [πr(x; t); πs(x ; t)] = 0: Wei Wang(SJTU) Lectures on QFT 2017.10.12 23 / 41 Quantization for many real scalar fields Heisenberg equation φ_r(x; t) = i[H; φr(x; t)]; π_ r(x; t) = i[H; πr(x; t)]: or @ φr(x) = i[Pµ; φr(x)]: @xµ solution: iP ·b −iP ·b φr(x + b) = e φr(x)e : Wei Wang(SJTU) Lectures on QFT 2017.10.12 24 / 41 Complex scalar field real scalar field: Hermitian, particle=anti-particle.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    41 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us