Relaxed Variational Principle for Water Wave Modeling

Relaxed Variational Principle for Water Wave Modeling

RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING DENYS DUTYKH1 Senior Research Fellow UCD & Charge´ de Recherche CNRS 1University College Dublin School of Mathematical Sciences Workshop on Ocean Wave Dynamics ACKNOWLEDGEMENTS COLLABORATOR: ◮ Didier Clamond: Professor, LJAD, Universite´ de Nice Sophia Antipolis, France TALK IS MAINLY BASED ON: Clamond, D., Dutykh, D. (2012). Practical use of variational principles for modeling water waves. Physica D: Nonlinear Phenomena, 241(1), 25-36. WATER WAVE PROBLEM -I PHYSICAL ASSUMPTIONS: ◮ Fluid is ideal ◮ Flow is incompressible ◮ . and irrotational, i.e. u = ∇φ ◮ Free surface is a graph ◮ Above free surface there is void 0.5 ◮ z Atmospheric pressure is constant η (x,y,t) 0 a y O -0.5 h(x,y,t) x h 0 -1 Surface tension can be also taken into -1.5 -2 4 3 2 account 1 0 4 -1 3 2 -2 1 0 -1 -3 -2 -3 -4 WATER WAVE PROBLEM - II ◮ Continuity equation 2 ∇x φ = 0, (x, y) Ω [ d,η], ,y ∈ × − ◮ Kinematic bottom condition ∂φ + ∇φ ·∇d = 0, y = d, ∂y − ◮ Kinematic free surface condition ∂η ∂φ +∇φ·∇η = , y = η(x, t), ∂t ∂y ◮ Dynamic free surface condition ∇ ∂φ 1 2 η + ∇x,y φ +gη+σ∇· = 0, y = η(x, t). ∂t 2| | 1 + ∇η 2 | | p HAMILTONIAN STRUCTURE ZAKHAROV (1968) [ZAK68]; CRAIG &SULEM (1993) [CS93] CANONICAL VARIABLES: η(x, t): free surface elevation φ˜(x, t): velocity potential at the free surface φ˜(x, t) := φ(x, y = η(x, t), t) ◮ Evolution equations: ∂η δH ∂φ˜ δH ρ = , ρ = , ∂t δφ˜ ∂t − δη ◮ Hamiltonian: η 1 2 1 2 2 H = ∇x,y φ dy + gη + σ 1 + ∇η 1 Z 2| | 2 q | | − −d LUKE’S VARIATIONAL PRINCIPLES J.C. LUKE, JFM (1967) [LUK67] ◮ First improvement of the classical Lagrangian L := K +Π: t2 η 1 2 = ρL dx dt, L := φt + ∇x,y φ + gy dy L Z Z Z 2| | t1 Ω −d δφ: ∆φ = 0, (x, y) Ω [ d,η], ∂φ ∈ × − δφ − : + ∇φ ·∇d = 0, y = d, |y= d ∂y − δφ : ∂η + ∇φ ·∇η ∂φ = 0, y = η(x, t), |y=η ∂t − ∂y δη: ∂φ + 1 ∇φ 2 + gη = 0, y = η(x, t). ∂t 2 | | ◮ We recover the water wave problem by computing variations w.r.t. η and φ GENERALIZATION OF THE LAGRANGIAN DENSITY D. CLAMOND &D.DUTYKH,PHYS. D (2012) [CD12] ◮ Introduce notation (traces): φ˜ := φ(x, y = η(x, t), t): quantity at the free surface φˇ := φ(x, y = d(x, t), t): value at the bottom − ◮ Equivalent form of Luke’s lagrangian: η L ˜ ˇ 1 2 1 2 1 ∇ 2 1 2 = φηt + φdt gη + gd φ + φy dy − 2 2 − Z h2| | 2 i −d ◮ Explicitly introduce the velocity field: u = ∇φ, v = φy η 1 2 1 2 2 L = φη˜ t +φˇdt gη (u +v )+µ·(∇φ u)+ν(φy v) dy −2 −Z−d h2 − − i µ,ν: Lagrange multipliers or pseudo-velocity field GENERALIZATION OF THE LAGRANGIAN DENSITY D. CLAMOND &D.DUTYKH,PHYS. D (2012) [CD12] ◮ Relaxed variational principle: 1 2 L =(ηt +µ ˜ ·∇η ν˜)φ˜ +(dt +µ ˇ ·∇d +ν ˇ)φˇ gη − − 2 η 1 2 1 2 + µ · u u + νv v +(∇· µ + νy )φ dy Z h − 2 − 2 i −d ◮ Classical formulation (for comparison): η L ˜ ˇ 1 2 1 ∇ 2 1 2 = φηt + φdt gη φ + φy dy − 2 − Z h2| | 2 i −d DEGREES OF FREEDOM: η,φ; u, v ; µ,ν SHALLOW WATER REGIME CHOICE OF A SIMPLE ANSATZ IN SHALLOW WATER ◮ Ansatz: − u(x, y, t) u¯(x, t), v(x, y, t) (y + d)(η + d) 1 v˜(x, t) ≈ ≈ − φ(x, y, t) φ¯(x, t),ν(x, y, t) (y + d)(η + d) 1 ν˜(x, t) ≈ ≈ ◮ Lagrangian density: 1 2 1 2 1 1 2 L = φη¯ t gη +(η + d) µ¯ u¯ u¯ + ν˜v˜ v˜ µ¯ ∇φ¯ − 2 h · − 2 3 − 6 − · i ◮ Nonlinear Shallow Water Equations: ht + ∇· [hu¯]= 0, u¯t +(u¯ ·∇)u¯ + g∇h = 0. ◮ Not so interesting. CONSTRAINING WITH FREE SURFACE IMPERMEABILITY ◮ Constraint: ν˜ = ηt +µ ¯ ·∇η ◮ Generalized Serre (Green–Naghdi) equations [Ser53]: ht + ∇· [hu¯]= 0, 1 − u¯ + u¯ ·∇u¯ + g∇h + h 1∇[h 2γ˜] = (u¯ ·∇h)∇(h∇· u¯) t 3 [u¯ ·∇(h∇· u¯)]∇h − 2 γ˜ = v˜t + u¯ ·∇v˜ = h (∇· u¯) ∇· u¯t u¯ ·∇(∇· u¯) − − CANNOT BE OBTAINED FROM LUKE’S LAGRANGIAN: δµ¯: u¯ = ∇φ¯ 1 v˜∇η = ∇φ¯ − 3 6 INCOMPRESSIBILITY AND PARTIAL POTENTIAL FLOW ◮ Ansatz and constraints (v = φy ): 6 µ¯ = u¯, ν˜ = v˜, u¯ = ∇φ,¯ v˜ = (η + d)∇2φ¯ − 1 2 1 2 1 3 2 2 L = φη¯ t gη (η + d)(∇φ¯) + (η + d) (∇ φ¯) − 2 − 2 6 ◮ Generalized Kaup-Boussinesq equations: 1 η + ∇· (η + d)∇φ¯ + ∇2 (η + d)3(∇2φ¯) = 0, t 3 1 2 1 2 2 2 φ¯t + gη + (∇φ¯) (η + d) (∇ φ¯) = 0. 2 − 2 ◮ Hamiltonian functional: 1 1 1 H = gη2 + (η + d)(∇φ¯)2 (η + d)3(∇2φ¯)2 dx ZΩn2 2 − 6 o INCOMPRESSIBILITY AND PARTIAL POTENTIAL FLOW ◮ Ansatz and constraints (v = φy ): 6 µ¯ = u¯, ν˜ = v˜, u¯ = ∇φ,¯ v˜ = (η + d)∇2φ¯ − 1 2 1 2 1 3 2 2 L = φη¯ t gη (η + d)(∇φ¯) + (η + d) (∇ φ¯) − 2 − 2 6 ◮ Generalized Kaup-Boussinesq equations: 1 η + ∇· (η + d)∇φ¯ + ∇2 (η + d)3(∇2φ¯) = 0, t 3 1 2 1 2 2 2 φ¯t + gη + (∇φ¯) (η + d) (∇ φ¯) = 0. 2 − 2 ◮ Dispersion relation (c2 < 0, κd > 1/√3): 1 η = a cos κ(x ct), c2 = gd(1 (κd)2) − − 3 DEEP WATER APPROXIMATION ◮ Choice of the ansatz: − φ; u; v; µ; ν φ˜; u˜; v˜ ;µ ˜;ν ˜ eκ(y η) { } ≈ { } 2 1 2 1 2 2κL = 2κφη˜ t gκη + u˜ + v˜ u˜ (∇φ˜ κφ˜∇η) κv˜φ˜ − 2 2 − · − − ◮ generalized Klein-Gordon equations: 1 −1 2 1 1 2 2 ηt + κ ∇ φ˜ κφ˜ = φ˜[∇ η + κ(∇η) ] 2 − 2 2 1 2 φ˜t + gη = ∇· φ˜∇φ˜ κφ˜ ∇η −2 − ◮ Hamiltonian functional: 1 1 − 1 = gη2 + κ 1[∇φ˜ κφ˜∇η]2 + κφ˜2 dx H ZΩn2 4 − 4 o DEEP WATER APPROXIMATION ◮ Choice of the ansatz: − φ; u; v; µ; ν φ˜; u˜; v˜ ;µ ˜;ν ˜ eκ(y η) { } ≈ { } 2 1 2 1 2 2κL = 2κφη˜ t gκη + u˜ + v˜ u˜ (∇φ˜ κφ˜∇η) κv˜φ˜ − 2 2 − · − − ◮ generalized Klein-Gordon equations: 1 −1 2 1 1 2 2 ηt + κ ∇ φ˜ κφ˜ = φ˜[∇ η + κ(∇η) ] 2 − 2 2 1 2 φ˜t + gη = ∇· φ˜∇φ˜ κφ˜ ∇η −2 − ◮ Multi-symplectic structure: Mzt + Kzx + Lzy = ∇z (z) S COMPARISON WITH EXACT STOKES WAVE ◮ Cubic Zakharov Equations (CZE): ηt dφ˜ = ∇· (η∇φ˜) d(ηdφ˜)+ − − − 1 ∇2 2d ˜ d d d ˜ 1 d 2∇2 ˜ 2 (η φ)+ (η (η φ)) + 2 (η φ), 1 2 1 2 2 φ˜t + gη = (dφ˜) (∇φ˜) (ηdφ˜)∇ φ˜ (dφ˜)d(ηdφ˜). 2 − 2 − − ◮ Phase speed : − 1 1 2 2 1 2 1 4 707 6 8 EXACT: g κ c = 1 + 2 α + 2 α + 384 α + O(α ) − 1 1 41 913 2 2 1 2 4 6 8 CZE: g κ c = 1 + 2 α + 64 α + 384 α + O(α ) − 1 1 899 2 2 1 2 1 4 6 8 GKG: g κ c = 1 + 2 α + 2 α + 384 α + O(α ) − ◮ nn 2αn n-th Fourier coefficient to the leading order: − (the 2n 1(n−1)! same in gKG & Stokes but not in CZE) DEEP-WATER SERRE–GREEN–NAGHDI EQUATIONS CONSTRAINING WITH THE FREE-SURFACE IMPERMEABILITY ◮ Additional constraint: v˜ = ηt + u˜ ·∇η ◮ Lagrangian density reads: 2 1 2 1 2 2κ L = φ˜ (κηt + ∇· u˜) gκη + u˜ + (ηt + u˜ ·∇η) − 2 2 δ u˜ : 0 = u˜ +(ηt + u˜ ·∇η)∇η ∇φ,˜ − δ φ˜ : 0 = κηt + ∇· u˜, δη : 0 = 2gκη + κφ˜t + ηtt +(u˜ · η)t + · (u˜ηt )+ · [(u˜ · η)u˜]. ∇ ∇ ∇ ∇ ◮ Cannot be derived from Luke’s Lagrangian: ∇φ˜ = u˜ + v˜∇η DEEP-WATER SERRE–GREEN–NAGHDI EQUATIONS CONSTRAINING WITH THE FREE-SURFACE IMPERMEABILITY ◮ Additional constraint: v˜ = ηt + u˜ ·∇η ◮ Lagrangian density reads: 2 1 2 1 2 2κ L = φ˜ (κηt + ∇· u˜) gκη + u˜ + (ηt + u˜ ·∇η) − 2 2 δ u˜ : 0 = u˜ +(ηt + u˜ ·∇η)∇η ∇φ,˜ − δ φ˜ : 0 = κηt + ∇· u˜, δη : 0 = 2gκη + κφ˜t + ηtt +(u˜ · η)t + · (u˜ηt )+ · [(u˜ · η)u˜]. ∇ ∇ ∇ ∇ ◮ Incompressibility is satisfied identically: 0 = κηt + ∇· u˜ ∇· u + vy = 0 ⇐⇒ DEEP-WATER SERRE–GREEN–NAGHDI EQUATIONS CONSTRAINING WITH THE FREE-SURFACE IMPERMEABILITY ◮ Additional constraint: v˜ = ηt + u˜ ·∇η ◮ Lagrangian density reads: 2 1 2 1 2 2κ L = φ˜ (κηt + ∇· u˜) gκη + u˜ + (ηt + u˜ ·∇η) − 2 2 δ u˜ : 0 = u˜ +(ηt + u˜ ·∇η)∇η ∇φ,˜ − δ φ˜ : 0 = κηt + ∇· u˜, δη : 0 = 2gκη + κφ˜t + ηtt +(u˜ · η)t + · (u˜ηt )+ · [(u˜ · η)u˜]. ∇ ∇ ∇ ∇ ◮ Exact dispersion relation if k = κ: − η = a cos k(x ct), c2 = 2 g κ (k 2 + κ2) 1 1 − ARBITRARY DEPTH CASE NO AVAILABLE SMALL PARAMETERS. ◮ 0.5 Finite depth ansatz: z η (x,y,t) 0 a y cosh Y cosh Y sinh Y O κ ˜ x u κ u x -0.5 κ x φ φ( , t), ˜( , t), v h(x,y,t) v˜( , t), x h 0 ≈ cosh κh ≈ cosh κh -1 ≈ sinh κh -1.5 cosh κY sinh κY -2 4 x x 3 µ µ˜( , t), ν ν˜( , t). 2 1 0 4 -1 3 2 -2 1 cosh h sinh h 0 ≈ κ ≈ κ -1 -3 -2 -3 -4 ◮ Finite depth Lagrangian: 1 2 1 2 sinh(2κh) 2κh L =[ ηt +µ ˜ ·∇η ] φ˜ g η +[ν ˜ v˜ v˜ ] − − 2 − 2 2κ cosh(2κh) 2κ − sinh(2κh)+ 2κh + [˜µ · u˜ 1 u˜2 + φ˜∇· µ˜ κ tanh(κh)φ˜ µ˜ ·∇η] − 2 − 2κ cosh(2κh)+ 2κ 2κh + 1 φ˜ ν˜ 1 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us