Iron Nitrosyl Complexes by Carol F. Fortney B. S., University of Pittsburgh, 1998 M. S., University of Pittsburgh, 2002 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2002 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This thesis was presented by Carol F.Fortney It was defended on December 19, 2002 and approved by Professor Rex E. Shepherd Professor David H. Waldeck Professor Stéphane Petoud ii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my committee members, Professors David H. Waldeck and Stéphane Petoud, and to my advisor for this project, the late Professor Rex E. Shepherd. iii Iron Nitrosyl Complexes Carol F. Fortney, M. S. University of Pittsburgh, 2002 Nitric oxide (NO) is an endogenously produced bioregulatory agent that also is toxic. Disturbances in NO production and regulation are known to cause central nervous system disorders and asthma among many other diseases. Iron nitrosyl complexes help to balance the beneficial effects of NO against its potentially fatal effects. This document reviews the literature devoted to structural and chemical characteristics of iron nitrosyl porphyrin complexes, bimetallic iron containing nitrosyl complexes, dinitrosyl complexes, iron nitrosyl cluster complexes, and non-heme nitrosyl complexes prepared between 1992 and 2002. iv TABLE OF CONTENTS 1. IRON NITROSYL COMPLEXES ......................................................................................... 1 1.1. INTRODUCTION .......................................................................................................... 1 1.2. NITRIC OXIDE SYNTHASE........................................................................................ 3 1.3. BIOLOGICAL ROLES OF IRON NITROSYL COMPLEXES.................................... 5 1.4. COMMON IRON NITROSYL SYNTHETIC METHODS........................................... 7 1.4.1. NITROSYLATION BY NO+ DONORS................................................................ 7 1.4.2. DIRECT ADDITION OF NO GAS........................................................................ 8 1.4.3. SODIUM NITRITE AS AN NO+ SOURCE .......................................................... 9 1.4.4. HYDROXYLAMINE AS AN NO SOURCE....................................................... 10 1.4.5. NITROSAMIDES................................................................................................. 10 2. REVIEW OF IRON NITROSYL COMPLEXES................................................................. 11 2.1. ENEMARK-FELTHAM NOTATION......................................................................... 11 2.2. PORPHYRIN COMPLEXES ....................................................................................... 13 2.3. METALLOPORPHYRIN RELATED IRON NITROSYL COMPLEXES ................. 44 2.4. DINITROSYL COMPLEXES...................................................................................... 55 2.5. BIMETALLIC NITROSYLS ....................................................................................... 60 2.6. CLUSTERS................................................................................................................... 75 2.7. NON-HEME NITROSYL COMPLEXES.................................................................... 86 2.8. CONCLUSION........................................................................................................... 103 APPENDIX A............................................................................................................................. 105 NITRIC OXIDE SYNTHASE................................................................................................ 105 APPENDIX B ............................................................................................................................. 114 ADDITIONAL BIOLOGICAL ROLES OF IRON NITROSYL COMPLEXES .................. 114 BIBLIOGRAPHY....................................................................................................................... 121 v LIST OF TABLES Table 2.1 − Physical and Kinetic Data for [Fe(OEP)(NO)] and [Fe(OETAP)(NO)] ................... 20 Table 2.2 − Selected Comparisons for [Fe(OEP)(NO)]+ .............................................................. 22 Table 2.3 − Selected Bond Lengths and Angles for (OEP)M(p-C6H4F) M = Ru, Fe................... 31 Table 2.4 − Energetics (eV) of Different Metalloporphyrin-NO Linkage Isomers...................... 37 Table 2.5 − Estimated CO and NO Binding Constants ................................................................ 50 vi LIST OF FIGURES Figure 1.1 − Physiological and Pathophysiological Roles of Nitric Oxide ................................. 2 Figure 1.2 − Nitric Oxide Synthesis ............................................................................................. 4 Figure 1.3 − Nitrosylation by NO Donors and Direct Addition of NO Gas................................. 9 − Figure 2.1 − ORTEP Diagram of [Fe(TpivPP)(NO2)(NO)] Form 1 Anion 1 .......................... 15 − Figure 2.2 − ORTEP Diagram of [Fe(TpivPP)(NO2)(NO)] Form 1 Anion 2 .......................... 16 − Figure 2.3 − ORTEP Diagram of [Fe(Tpivpp)(NO2)(NO)] Form 2......................................... 16 III II Figure 2.4 − Formation of [Fe (TpivPP)(NO3)] and [Fe (TpivPP)(NO)]................................. 17 Figure 2.5 − Neutral Trans Ligands for [Fe(NO)(OEP)L] Complexes ...................................... 18 Figure 2.6 − ORTEP Diagram of [Fe(OEP)(NO)] Form 1......................................................... 19 Figure 2.7 − Edge-on View of [Fe(OEP)(NO)] Form 2 ............................................................. 19 Figure 2.8 − Molecular Structure of [Fe(OETAP)(NO)]............................................................ 21 Figure 2.9 − Crystal Structure of [Fe(OEP)(NO)]ClO4 .............................................................. 22 Figure 2.10 − ORTEP Diagrams of the Two Cations in [Fe(OEP)(NO)]ClO4 ............................ 24 Figure 2.11 − Correlated Tilt/Asymmetry in Five-coordinated [Fe(Porph)(NO)] Derivatives .... 25 2 Figure 2.12 − Possible Distortions Leading to Greater Overlap of π*NO with Iron dz ................ 26 Figure 2.13 − Molecular Structure of (OEP)Fe(NO)(p-C6H4F) ................................................... 29 Figure 2.14 − Molecular Structure of (OEP)Ru(NO)(p-C6H4F)................................................... 30 Figure 2.15 − Selected Geometrical Parameters for (porph)Fe(NO)(p-C6H4F) ........................... 32 Figure 2.16 − Molecular Orbital Diagram of (porph)Fe(NO)(p-C6H4F)...................................... 33 Figure 2.17 − Orbitals 1B1 and 2A1 .............................................................................................. 34 Figure 2.18 − Bending of the Nitrosyl Ligand.............................................................................. 34 Figure 2.19 − NO Linkage Isomers .............................................................................................. 35 Figure 2.20 − The [Fe(P)(NO)]+ LUMO is Bonding and Antibonding........................................ 38 Figure 2.21 − Proposed Structure for Dioxobacteriochlorin (heme d1)........................................ 39 Figure 2.22 − Proposed Dissimilatory Nitrite Reductase Catalytic Cycle.................................... 40 Figure 2.23 − [(OEP)FeII(NO)]+, [(oxo-OEC)FeII(NO)]+, [(dioxo-OeiBC)FeII(NO)]+ ................ 41 Figure 2.24 − Valence Isomerization Upon Addition of N-Methyl Imidazole............................. 41 Figure 2.25 − The Oxidation-Reduction Mechanism of NO with [Fe(TMPyP)]5+ ...................... 43 2+ 2+ Figure 2.26 − [Fe(TIM)(CH3CN)2] and [Fe(TIM)(CH3CN)(NO)] ......................................... 45 2+ Figure 2.27 − EPR Spectrum of [Fe(TIM)(CH3CN)2(NO)] ...................................................... 45 Figure 2.28 − Visible Spectrum of [Fe(TIM)(CH3CN)2](PF6)2 in H2O........................................ 46 Figure 2.29 − [Fe(TIM)(CH3CN)2](PF6)2 Decomposition in H2O ............................................... 48 Figure 2.30 − Visible Spectrum of Reaction of [Fe(TIM)(CH3CN)2](PF6)2 with NO ................. 48 Figure 2.31 − Decompostion Pathways for [Fe(TIM)CH3CN)2](PF6)2 in H2O............................ 49 Figure 2.32 − [Fe(HL)(NO)]NO3.................................................................................................. 52 Figure 2.33 − [Fe(R2Q)(NO)] ....................................................................................................... 52 Figure 2.34 − [Fe(HL)(NO)]+ ....................................................................................................... 53 Figure 2.35 − [Fe(R2Q)(NO)] ....................................................................................................... 53 2 Figure 2.36 − ORTEP Diagram of Fe(NO)2PPh3(η -TCNE) and Solvent Molecule................... 55 Figure 2.37 − Suggested Reaction Pathway ................................................................................. 56 vii Figure 2.38 − Interconversion of 18 e- [FeXL(NO)2] and 17 e- [FeL2(NO)]............................... 56 2 Figure 2.39 − The Molecular Structure of Fe(NO)2P(OMe)3(η -TCNE)..................................... 58 2 Figure 2.40 − The Molecular Structure of Fe(NO)2P(OMe)3(η -TCNE)..................................... 58 Figure 2.41 − X-ray Structure of Fe(NO)2(I-MeIm)2 ..................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages148 Page
-
File Size-