Dissipation and Quantum Operations

Dissipation and Quantum Operations

Dissipation and Quantum Operations Ignacio García-Mata Dto. de Física, Lab. TANDAR, Comisión Nacional de Energía Atómica Buenos Aires, Argentina International Summer School on Quantum Information, MPI PKS Dresden 2005 Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 1 / 21 Outline 1 Intro 2 Open Systems 3 Open Systems in Phase Space 4 Dissipative Quantum Operations 5 Examples Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 2 / 21 Outline 1 Intro 2 Open Systems 3 Open Systems in Phase Space 4 Dissipative Quantum Operations 5 Examples Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 3 / 21 Intro. Motivations Understanding noise and (trying to) control it. Something to say about how the classical world emerges from the Quantum. Tools Quantum Channels (q. operations, superoperators, QDS’s . ) on an N dimensional Hilbert space, N £ N dimensional phase space (~ = 1=(2¼N)), Kraus operators. Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 4 / 21 Outline 1 Intro 2 Open Systems 3 Open Systems in Phase Space 4 Dissipative Quantum Operations 5 Examples Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 5 / 21 Open Systems Markov (local in time) assumption Lindblad Master equation 1 y y ½_ = (½) = i[H; ½] + [Lk ½; L ] + [Lk ; ½L ] L ¡ 2 k k Xk n o CPTP Quantum Dynamical Semi-group (channel, superoperator, quantum operation,. Lindblad (1976), Gorini et al. (1976)) Kraus operator sum form y S(½) = Mk ½Mk Xk y where k Mk Mk = I for TP. We asume discrete time. P Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 6 / 21 Outline 1 Intro 2 Open Systems 3 Open Systems in Phase Space 4 Dissipative Quantum Operations 5 Examples Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 7 / 21 Open Systems in Phase Space Representation in phase space by the Wigner function. Master eq. Fokker-Planck eq. for the Wigner function ! W_ (q; p) = [Hamiltonian + non-Hermitian Lk ’s] + diffusion Phase space contraction associated to y ¤ [Lk ; Lk ] 2 Lk (q; p); Lk (q; p) = ¡~¡!¡!0 ¡ f g Xk X Dissipation due to non-Hermitian L0 s = (I) = 0 k ) L 6 Non-unital dynamics S(I) = I 6 Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 8 / 21 Open Systems in Phase Space Representation in phase space by the Wigner function. Master eq. Fokker-Planck eq. for the Wigner function ! W_ (q; p) = [Hamiltonian + non-Hermitian Lk ’s] + diffusion Phase space contraction associated to y ¤ ~ [Lk ; Lk ] 2 Lk (q; p); Lk (q; p) = div(drift) < 0 ¡~¡!¡!0 ¡ f g Xk X Dissipation due to non-Hermitian L0 s = (I) = 0 k ) L 6 Non-unital dynamics S(I) = I 6 Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 8 / 21 Outline 1 Intro 2 Open Systems 3 Open Systems in Phase Space 4 Dissipative Quantum Operations 5 Examples Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 9 / 21 Quantum Operations So we have a map like 0 y ½ = S(½) = c®T®½T® with c® 0 ® ¸ X y y TP if ® c®T®T® = I Unital if ® c®T®T® = I UnitalP Diffusion, Dephasing, pure decoherenceP . ´ Bistochastic maps usually Random Unitary Processes Non-unital Dissipation (+ decoherence...) ´ Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 10 / 21 Quantum Operations So we have a map like 0 y ½ = S(½) = c®T®½T® with c® 0 ® ¸ X y y TP if ® c®T®T® = I Unital if ® c®T®T® = I UnitalP Diffusion, Dephasing, pure decoherenceP . ´ Bistochastic maps usually Random Unitary Processes Non-unital Dissipation (+ decoherence...) ´ Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 10 / 21 Quantum Operations So we have a map like 0 y ½ = S(½) = c®T®½T® with c® 0 ® ¸ X y y TP if ® c®T®T® = I Unital if ® c®T®T® = I UnitalP Diffusion, Dephasing, pure decoherenceP . ´ Bistochastic maps usually Random Unitary Processes See for example Bianucci et al, PRE 2002; Nonnenmacher, Nonlinearity 2003, IGM et al., PRL 2003; IGM & Saraceno, PRE 2004; Aolita (“boludo”) et al. PRA 2004; MMO Non-unital Dissipation (+ decoherence...) ´ Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 10 / 21 Quantum Operations So we have a map like 0 y ½ = S(½) = c®T®½T® with c® 0 ® ¸ X y y TP if ® c®T®T® = I Unital if ® c®T®T® = I UnitalP Diffusion, Dephasing, pure decoherenceP . ´ Bistochastic maps usually Random Unitary Processes Non-unital Dissipation (+ decoherence...) ´ Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 10 / 21 Dissipative Quantum Operations Non-unital Dissipation (+ decoherence...) ´ Quantities Tr (S(I=N) I=N)2 ´ = ¡ non-unitality (“distance”) Tr I N 2 £ [( = ) ] ¤ Tr (S(I=N))2 (I=N)2 = ¡ (“@ ” of purity) Tr I N 2 t £ [( = ) ] ¤ 1 y 2 def 1 2 = Tr ( [Mk ; Mk ]) = Tr[¡ ] N " # N Xk In the classical limit ´ is related to the integral over phase space of the Poisson brackets of Lk (q; p)’s global dissipation parameter. ¡! Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 11 / 21 Dissipative Quantum Operations Non-unital Dissipation (+ decoherence...) ´ Quantities Tr (S(I=N) I=N)2 ´ = ¡ non-unitality (“distance”) Tr I N 2 £ [( = ) ] ¤ Tr (S(I=N))2 (I=N)2 = ¡ (“@ ” of purity) Tr I N 2 t £ [( = ) ] ¤ 1 y 2 def 1 2 = Tr ( [Mk ; Mk ]) = Tr[¡ ] N " # N Xk In the classical limit ´ is related to the integral over phase space of the Poisson brackets of Lk (q; p)’s global dissipation parameter. ¡! Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 11 / 21 Dissipative Quantum Operations Non-unital Dissipation (+ decoherence...) ´ Quantities Tr (S(I=N) I=N)2 ´ = ¡ non-unitality (“distance”) Tr I N 2 £ [( = ) ] ¤ Tr (S(I=N))2 (I=N)2 = ¡ (“@ ” of purity) Tr I N 2 t £ [( = ) ] ¤ 1 y 2 def 1 2 = Tr ( [Mk ; Mk ]) = Tr[¡ ] N " # N Xk In the classical limit ´ is related to the integral over phase space of the Poisson brackets of Lk (q; p)’s global dissipation parameter. ¡! Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 11 / 21 Dissipative Quantum Operations Definition y ¡ = [Mk ; Mk ] Xk Hermitian and traceless Representation in phase space (Wigner or Husimi) is real and gives picture of local contraction regions (¡(q; p) < 0) Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 12 / 21 Dissipative Quantum Operations Definition y ~ ¡ = [Mk ; Mk ] div(drift) ¡“~¡¡!¡!0” / Xk Hermitian and traceless Representation in phase space (Wigner or Husimi) is real and gives picture of local contraction regions (¡(q; p) < 0) Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 12 / 21 Outline 1 Intro 2 Open Systems 3 Open Systems in Phase Space 4 Dissipative Quantum Operations 5 Examples Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 13 / 21 Amplitude damping channel 1-qubit Amplitude Damping channel (Preskill, Nielsen & Chuang) Kraus operators 1 0 0 pp M = ; M = 0 0 1 p 1 0 0 µ ¡ ¶ µ ¶ The density matrix transformsp as AD ½00 + p½11 1 p ½01 S (½) = ¡ 1 p ½10 (1 p)½11 µ ¡ p ¡ ¶ Non-unital because p 1 + p 0 SAD(I) = = I 0 (1 p) 6 µ ¡ ¶ AD 2 S ( 0 0 ) = 0 0 ´ = p ¡ = pz j ih j j ih j Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 14 / 21 Amplitude damping channel 1-qubit Amplitude Damping channel (Preskill, Nielsen & Chuang) Kraus operators 1 0 0 pp M = ; M = 0 0 1 p 1 0 0 µ ¡ ¶ µ ¶ The density matrix transformsp as AD ½00 + p½11 1 p ½01 S (½) = ¡ 1 p ½10 (1 p)½11 µ ¡ p ¡ ¶ Non-unital because p 1 + p 0 SAD(I) = = I 0 (1 p) 6 µ ¡ ¶ AD 2 S ( 0 0 ) = 0 0 ´ = p ¡ = pz j ih j j ih j Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 14 / 21 Amplitude damping channel 1-qubit Amplitude Damping channel (Preskill, Nielsen & Chuang) Kraus operators 1 0 0 pp M = ; M = 0 0 1 p 1 0 0 µ ¡ ¶ µ ¶ The density matrix transformsp as AD ½00 + p½11 1 p ½01 S (½) = ¡ 1 p ½10 (1 p)½11 µ ¡ p ¡ ¶ Non-unital because p 1 + p 0 SAD(I) = = I 0 (1 p) 6 µ ¡ ¶ AD 2 S ( 0 0 ) = 0 0 ´ = p ¡ = pz j ih j j ih j Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 14 / 21 Amplitude damping channel 1-qubit Amplitude Damping channel (Preskill, Nielsen & Chuang) Kraus operators 1 0 0 pp M = ; M = 0 0 1 p 1 0 0 µ ¡ ¶ µ ¶ The density matrix transformsp as AD ½00 + p½11 1 p ½01 S (½) = ¡ 1 p ½10 (1 p)½11 µ ¡ p ¡ ¶ Non-unital because p 1 + p 0 SAD(I) = = I 0 (1 p) 6 µ ¡ ¶ AD 2 S ( 0 0 ) = 0 0 ´ = p ¡ = pz j ih j j ih j Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 14 / 21 Simple Model Superoperators of the form S2 = (1 ²)I + ²S1 ¡ Propose y S²®(½) = (1 ²)½ + ² P ½P 0 < ® < 1 ¡ [®i];i [®i];i Xij def where Pij = i j and i = 0; 1; : : : ; N 1 labels momentum eigenbasis j ih j ¡ (pi = i=N) and [®i] = int(®i). ® = 1: Unital, Generalized 1 ® ´ = ²2 ¡ ; ¡ = ²( ®i ®i I) Phase Damping channel ® j ih j ¡ (See Aolita et al., PRE 2004). µ ¶ Xi ® < (N 1)=N Non-Unital ® 0 “mimics” classical friction (AD channel-lik¡ e). Invariant » 0 state: S( 0 0 ) = 0 0 ® q = q j ih j j ih j 8 hpi0 = (1 ²)hpi h i ¡ h i Nacho García-Mata (Buenos Aires.) Dissipation and Quantum Operations ISSQUI05 15 / 21 N = 2 case ("1 qubit") In this case N = 2 and the minimum ´ is attained for ® 1=2 (= (N ¡ 1)=N)).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    35 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us