18.01A Topic 5: Second Fundamental Theorem, Lnx As an Integral. Read

18.01A Topic 5: Second Fundamental Theorem, Lnx As an Integral. Read

<p>18.01A Topic 5: Second fundamental theorem, ln&nbsp;x as an integral. Read: SN: PI, FT. </p><p>R</p><p></p><ul style="display: flex;"><li style="flex:1">b</li><li style="flex:1">b</li></ul><p></p><p>First Fundamental Theorem: F<sup style="top: -0.3616em;">0 </sup>= f ⇒ </p><p>f(x) dx = F(x)|<sub style="top: 0.2906em;">a </sub></p><p>a</p><p>Questions: 1. Why dx? 2.&nbsp;Given f(x) does F(x) always exist? </p><p>Answer to question 1. </p><p>R<br>P</p><p>a) Riemann sum: Area ≈ <sup style="top: -0.4842em;">n </sup>f(c<sub style="top: 0.1494em;">i</sub>)∆x → <sup style="top: -0.5397em;">b </sup>f(x) dx </p><p>1</p><p>a</p><p>In the limit the sum becomes an integral and the finite ∆x becomes the infinitesimal dx. b) The dx helps with change of variable. </p><p>ab</p><p>R</p><p>1<br>1</p><p>√</p><p>Example: Compute </p><p>dx. </p><p>1−x<sup style="top: -0.1891em;">2 </sup></p><p>0</p><p>Let x = sin u. </p><p>dx du </p><p>= cos u ⇒ dx = cos u du, x = 0&nbsp;⇒ u = 0,&nbsp;x = 1&nbsp;⇒ u = π/2. </p><p></p><ul style="display: flex;"><li style="flex:1">R</li><li style="flex:1">R</li><li style="flex:1">R</li><li style="flex:1">R</li></ul><p></p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">π/2 </li><li style="flex:1">π/2 </li><li style="flex:1">π/2 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">cos u </li></ul><p>cos u </p><p>√</p><p>√</p><p>Substituting: </p><p>dx = </p><p>cos u du = </p><p></p><ul style="display: flex;"><li style="flex:1">du = </li><li style="flex:1">du = π/2. </li></ul><p></p><p>1−x<sup style="top: -0.1891em;">2 </sup></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li><li style="flex:1">0</li></ul><p>1−sin<sup style="top: -0.2402em;">2 </sup></p><p>u</p><p>Answer to question 2. Yes&nbsp;→ Second Fundamental Theorem: </p><p>Z</p><p>x</p><p></p><ul style="display: flex;"><li style="flex:1">If f is continuous and F(x) = </li><li style="flex:1">f(u) du then F<sup style="top: -0.3615em;">0</sup>(x) = f(x). </li></ul><p></p><p>a</p><p>I.e. f always has an anit-derivative. This is subtle: we have defined a NEW function F(x) using the definite integral. Note we needed a dummy variable u for integration because x was already taken. </p><p>Z</p><p>x+∆x </p><p>f(x) </p><p>444</p><p>proof: ∆area = </p><p>f(x) dx </p><p>x</p><p></p><ul style="display: flex;"><li style="flex:1">Z</li><li style="flex:1">Z</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">x+∆x </li><li style="flex:1">x</li></ul><p></p><p>area = ∆F </p><p>x x + ∆x </p><p>=</p><p></p><ul style="display: flex;"><li style="flex:1">f(x) dx − </li><li style="flex:1">f(x) dx </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>= F(x + ∆x) − F(x) = ∆F. <br>But, also ∆area ≈ f(x) ∆x ⇒ ∆F ≈ f(x) ∆x or As ∆x → 0 this becomes exact: </p><p>∆F <br>≈ f(x). <br>∆x </p><p>dF dx </p><p>= f(x). QED <br>More subtlety: For any continuous function there is an anti-derivative. We might not know it in closed form but we can always write it as a definite integral with a variable limit. This is useful since Riemann sums let us compute it as accurately as we wish. </p><p>Examples: (Not elementary functions BUT they are functions.) </p><p>R</p><p>2</p><p>F(x) =&nbsp;<sup style="top: -0.5397em;">x </sup>e<sup style="top: -0.3616em;">−t </sup>dt statistics. </p><p>0</p><p>R</p><p>x</p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">Li(x) = </li><li style="flex:1"><sub style="top: 0.3436em;">ln t </sub>dt number theory. </li></ul><p>Si(x) =&nbsp;<sup style="top: -0.5397em;">x </sup>sin(t<sup style="top: -0.3616em;">2</sup>) dt optics. </p><p>2</p><p>R</p><p>0</p><p>(continued) </p><p>1</p><p>18.01A topic&nbsp;5 </p><p>2</p><p>Z</p><p>x</p><p>1</p><p>Natural logarithm as a definite integral: ln&nbsp;x = </p><p>dt. t</p><p>1</p><p>We can use this definition of ln&nbsp;x to derive all the properties of ln&nbsp;x. This&nbsp;is an important example of how to derive properties from functions defined as integrals. </p><p>Properties of lnx: </p><p>1. ln&nbsp;1 = 0.&nbsp;(proof: obvious from definition) 2. ln(ab) = ln a + ln b. proof: (uses change of variable and properties of integrals) </p><p></p><ul style="display: flex;"><li style="flex:1">R</li><li style="flex:1">R</li><li style="flex:1">R</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">ab </li><li style="flex:1">a</li><li style="flex:1">ab </li></ul><p></p><p>ln(ab) = </p><p></p><ul style="display: flex;"><li style="flex:1"><sup style="top: -0.3922em;">1 </sup>dt = </li><li style="flex:1"><sup style="top: -0.3922em;">1 </sup>dt + </li><li style="flex:1"><sup style="top: -0.3922em;">1 </sup>dt </li></ul><p></p><p>1</p><p>t</p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1">t</li><li style="flex:1">a</li><li style="flex:1">t</li></ul><p></p><p>For the second integral on the right let au = t </p><p>⇒ a du = dt, t&nbsp;= a ↔ u = 1, t&nbsp;= ab ↔ u = b </p><p></p><ul style="display: flex;"><li style="flex:1">R</li><li style="flex:1">R</li><li style="flex:1">R</li><li style="flex:1">R</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">a</li><li style="flex:1">b</li><li style="flex:1">a</li><li style="flex:1">b</li></ul><p></p><p><sup style="top: -0.3922em;">1 </sup>dt + <sub style="top: 0.3459em;">1 au </sub>a du = </p><p><sup style="top: -0.3922em;">1 </sup>dt + <sub style="top: 0.3459em;">1 u </sub>du = ln a + ln b </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><p>Thus ln(ab) = </p><p>1</p><p>t</p><p>1</p><p>t</p><p>1</p><p>x</p><p>3. ln&nbsp;x is increasing.&nbsp;(proof: derivative =&nbsp;&gt; 0) (Won’t do the following in class.) </p><p>1</p><p>a</p><p>4. ln(1/a) = − ln a. (proof:&nbsp;0 = ln 1 = ln(a · ) = ln a + ln(1/a).) 5. ln&nbsp;x<sup style="top: -0.3616em;">n </sup>= n ln x. (proof:&nbsp;ln x<sup style="top: -0.3616em;">n </sup>= ln(x · x · x · · · x) . . .) 6. ln&nbsp;x → ∞ as x → ∞. (proof:&nbsp;ln 2<sup style="top: -0.3616em;">n </sup>= n ln 2 → ∞ and ln&nbsp;x is increasing) </p><p>More uses of the second fundamental theorem: </p><p>Example: Sketch graph of&nbsp;F(x) = </p><p>R</p><p>5</p><p>x</p><p><sup style="top: -0.3922em;">u −1 </sup>du. </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">1+u<sup style="top: -0.1891em;">2 </sup></li></ul><p></p><p>y</p><p>Critical points: </p><p>T</p><ul style="display: flex;"><li style="flex:1">T</li><li style="flex:1">j</li></ul><p></p><ul style="display: flex;"><li style="flex:1">T</li><li style="flex:1">j</li></ul><p></p><p>x<sup style="top: -0.2344em;">5</sup>−1 </p><p></p><ul style="display: flex;"><li style="flex:1">T</li><li style="flex:1">j</li></ul><p></p><ul style="display: flex;"><li style="flex:1">T</li><li style="flex:1">j</li></ul><p>j</p><p></p><ul style="display: flex;"><li style="flex:1">F<sup style="top: -0.3615em;">0</sup>(x) = </li><li style="flex:1">.</li></ul><p></p><p>TTTjjj</p><p>1+x<sup style="top: -0.1892em;">2 </sup></p><p>x</p><p>F<sup style="top: -0.3616em;">0</sup>(x) = 0&nbsp;⇒ x = 1. </p><p>x</p><ul style="display: flex;"><li style="flex:1">F<sup style="top: -0.3615em;">0 </sup>&lt; 0 </li><li style="flex:1">F<sup style="top: -0.3615em;">0 </sup>&gt; 0 </li></ul><p></p><p>1</p><p>1</p><p>Special values: </p><ul style="display: flex;"><li style="flex:1">F(0) = 0. </li><li style="flex:1">Sign of F<sup style="top: -0.3616em;">0</sup>(x) </li><li style="flex:1">y = F(x) </li></ul><p></p><p>R</p><p>Example: 3D-8a) If&nbsp;<sup style="top: -0.5397em;">x </sup>f(t) dt = 2x(sin x + 1)&nbsp;find f(π/2). answer: f(x) = derivative of integral = <sub style="top: 0.3435em;">dx</sub>2x(sin x + 1) = 2(sin x + 1) + 2x(cos x) ⇒ f(π/2) = 4. </p><p>0</p><p>d</p><p>R</p><p>Example: 3D-8b) If&nbsp;<sup style="top: -0.5397em;">x/2 </sup>f(t) dt = 2x(sin x + 1)&nbsp;find f(π/2). </p><p>0</p><p>R</p><p>answer: Chain rule: Let F(u) =&nbsp;<sup style="top: -0.5397em;">u </sup>f(t) dt. </p><p>0</p><p>d</p><p>So F<sup style="top: -0.3616em;">0</sup>(u) = f(u) and <sub style="top: 0.3435em;">dx</sub>F(x/2) = F<sup style="top: -0.3616em;">0</sup>(x/2)<sub style="top: 0.3435em;">2</sub><sup style="top: -0.3922em;">1 </sup>= f(x/2)<sup style="top: -0.3922em;">1</sup><sub style="top: 0.3435em;">2 </sub>. </p><p>d</p><p>12</p><p>But, F(x/2) = 2x(sin x + 1)&nbsp;⇒ <sub style="top: 0.3435em;">dx</sub>F(x/2) = 2(sin x + 1) + 2x(cos x) =&nbsp;f(x/2). So, let x = π ⇒ <sup style="top: -0.3922em;">1</sup><sub style="top: 0.3436em;">2 </sub>f(π/2) = 2 + 2π(−1) = 2 − 2π ⇒ f(π/2) = 4 − 4π. </p><p>Example: 3<sub style="top: 0.3918em;">√</sub>D-11a) (change of variable): </p><p>R</p><p>e</p><p>Compute </p><p><sup style="top: -0.3923em;">ln x </sup>dx. </p><p>1</p><p>x</p><p>1</p><p>x</p><p></p><ul style="display: flex;"><li style="flex:1">Substitute: u = ln x ⇒ du = dx, </li><li style="flex:1">x = 1 ↔ u = 0,&nbsp;x = e ↔ u = 1. </li></ul><p></p><p>R</p><p>√</p><p>1</p><p>⇒ integral = </p><p>u du = 2/3. </p><p>0</p><p>R</p><p>π</p><p>sin x <br>(2+cos x)<sup style="top: -0.1891em;">3 </sup></p><p>Example: 3D-11b) Compute </p><p>dx. </p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">Substitute: u = cos x ⇒ du = − sin x dx, </li><li style="flex:1">x = 0 ↔ u = 1,&nbsp;x = π ↔ u = −1. </li></ul><p></p><p>ꢀ</p><ul style="display: flex;"><li style="flex:1">R <sub style="top: 0.2629em;">−1 </sub></li><li style="flex:1">R</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li></ul><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1</li><li style="flex:1">1</li></ul><p>2</p><p>ꢀ</p><p>⇒ integral = </p><p>−</p><p>du = </p><p></p><ul style="display: flex;"><li style="flex:1">du = − (2 + u)<sup style="top: -0.3616em;">−2 </sup></li><li style="flex:1">= 4/9. </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">(2+u)<sup style="top: -0.1891em;">3 </sup></li><li style="flex:1">−1 (2+u)<sup style="top: -0.1915em;">3 </sup></li><li style="flex:1">−1 </li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us