Second Quantization of the Klein-Gordon Equation

Second Quantization of the Klein-Gordon Equation

Kapitza Spring 2018 Second Quantization of the Klein-Gordon Equation Ben Saltzman Q.F.T. TERM PAPER Professor Sarada Rajeev April 20th 2017 1 Introduction The Schr¨odinger equation, successful as it is for describing non-relativistic quantum particles, fails in the relativistic regime. By using special relativity, one can derive a relativistic version of the Schr¨odingerequation, known as the first quantization of the Klein-Gordon equation. Unfortunately, this has its own problems: negative energy and probability solutions, nonphysical entities that could spell the end for a theory. Moving from quantum theory to quantum field theory, fields are introduced as fundamental. Quantizing the Klein-Gordon equation in quantum field theory leads to a model known as the second quantization, which avoids many of the problems of the first quantization. 2 Second Quantization of the Klein-Gordon Equation 2.1 The Klein-Gordon Field We can write the Klein-Gordon field operator as 3 ( ik x) (ik x) φ(x)=C d k e − · a(k)+e · a†(k) (1) Z ✓ ◆ where 1 C = (2) 2k0(2⇡)3 0 and k = Ek. The field operator satisfiesp the Klein-Gordon equation, i.e. µ 2 (@µ@ + m )φ =0 (3) This can be split into positive and negative energy components as follows: (+) ( ) φ(x)=φ (x)+φ − (x) (+) 3 ( ik x) φ (x)=C d ke− · a(k) (4) Z ( ) 3 (ik x) φ − (x)=C d ke · a†(k) Z The conjugate momentum for the field operator is therefore ⇧(x)=φ˙(x) 0 3 = ik C d k exp( ik x)a(k) exp(ik x)a†(k) (5) − − · − · Z ✓ ◆ 1 Inverting equations 1 and 5 and solving for the annihilation and creation operators a and a†: 3 ik x 0 a(k)=C d xe · k φ(x)+i⇧(x) Z ✓ ◆ 3 ik x ik x = iC d x e · @ φ(x) @ e · φ(x) (6) t − t Z ✓ ◆ 3 ik x 0 a†(k)=C d xe− · k φ(x) i⇧(x) − Z ✓ ◆ 3 ik x ik x = iC d x e− · @ φ(x) @ e− · φ(x) (7) − t − t Z ✓ ◆ Taking the time derivative of equation 6: 3 ik x ik x @ a(k)=iC@ d x e · @ φ(x) @ e · φ(x) t t t − t Z ✓ ◆ 3 ik x ik x 2 ik x 2 ik x = iC d x @ e · @ φ(x)+e · @ φ(x) @ e · @ φ(x) @ e · φ(x) t t t − t t − t Z ✓ ◆ 3 ik x 2 2 ik x = iC d x e · @ φ(x) @ e · φ(x) t − t Z ✓ ◆ φ must satisfy the Klein-Gordon equation, so 3 ik x 2 2 0 2 ik x @ a(k)=iC d x e · ( m )φ(x)+(k ) e · φ(x) t r − Z ✓ ◆ 3 0 2 2 2 ik x = iC d x (k ) k m e · φ(x) − − Z ✓ ◆ =0 0 2 2 2 since (k ) k = m .Thesameprocedurefollowsfora†,meaningthatthe annihilation− and creation operators are time independent. The commutation relations between the annihilation and creation op- erators can be deduced from the already-known relations between the field operator and the conjugate momentum when imposing the contraint x0 = y0. To reduce clutter, we define C0 C . ⌘ 0 0 k k0 ! 2 3 3 i(k x+k y) [φ(x),φ(y)] = CC0 d k d k0 e− · 0· [a(k),a(k0)] ZZi(k x k y) ✓ i( k x+k y) + e− · − 0· a(k),a†(k0) + e− − · 0· a†(k),a(k0) i( k x k y) + e− − · − 0· ⇥ a†(k),a†(k⇤0) ⇥ ⇤ ◆ = 0⇥ ⇤ (8) 0 0 3 3 i(k x+k y) [⇧(x), ⇧(y)] = k k0 CC0 d k d k0 e− · 0· [a(k),a(k0)] − i(k x k ZZy) ✓ i( k x+k y) e− · − 0· a(k),a†(k0) e− − · 0· a†(k),a(k0) − − i( k x k y) + e− − · − 0· ⇥ a†(k),a†(k⇤0) ⇥ ⇤ ◆ = 0⇥ ⇤ (9) 0 3 3 i(k x+k y) [φ(x), ⇧(y)] = ik0 CC0 d k d k0 e− · 0· [a(k),a(k0)] − i(k x kZZy) ✓ i( k x+k y) e− · − 0· a(k),a†(k0) + e− − · 0· a†(k),a(k0) − (10) i( k x k y) e− − · − 0· ⇥ a†(k),a†(k⇤0) ⇥ ⇤ − ◆ = iδ3(x y) ⇥ ⇤ − The commutation relations between the annihilation and creation operators can be calculated from equations 6 and 7, knowing equations 2.1, 2.1, and 10: 3 3 i(k x+k y) 0 0 [a(k),a(k0)] = CC0 d x d ye · 0· k k0 [φ(x),φ(y)] ZZ ✓ + ik0[φ(x), ⇧(y)] + ik00[⇧(x),φ(y)] [⇧(x), ⇧(y)] − ◆ 3 3 i(k x+k y) 0 0 = CC0 d x d ye · 0· ik [φ(x), ⇧(y)]+ik0 [⇧(x),φ(y)] ZZ ✓ ◆ 0 0 3 3 i(k x+k y) 3 = CC0(k k0 ) d x d ye · 0· δ (x y) − − − ZZ 0 0 3 i(k+k ) x = CC0(k k0 ) d xe 0 · − − Z 0 0 i(k0+k00) x 3 = CC0(k k0 )e · δ (k k0) − − − = 0 (11) 3 In the last step, we use the fact that k0 = k00.Similarly,wefindthat a†(k),a†(k0) =0 (12) 3 a(k⇥),a†(k0) = δ⇤(k k0)(13) − So the creation and annihilation⇥ operators⇤ commute with themselves for any two k and k0,butdonotcommutewitheachother. 2.2 Relationship with the Harmonic Oscillator The Hamiltonian is the integral of the Hamiltonian density over all space: H H = d3x H Z 1 = d3x m2φ2 +( φ) ( φ)+⇧2 (14) 2 r · r Z ✓ ◆ Recall that k0 = k00. Using equation 1: 3 3 3 2 1 3 d k d k0 i(k+k ) x − 0 · 0 d xφ(x)= 3 d x e a(k)a(k ) 2(2⇡) pk0 pk00 Z i(k Zk ) x ZZ i(✓k+k ) x + e− − 0 · a(k)a†(k0)+e− − 0 · a†(k)a(k0) i( k k ) x + e− − − 0 · a†(k)a†(k0) 3 3 ◆ 1 d k d k0 i(k0+k00)x0 3 = e− a(k)a(k0)δ (k + k0) 2 pk0 p 00 ZZ k ✓ i(k0 k00)x0 3 i( k0+k00)x0 3 + e− − a(k)a†(k0)δ (k k0)+e− − a†(k)a(k0)δ ( k + k0) − − i( k0 k00)x0 3 + e− − − a†(k)a†(k0)δ ( k k0) − − ◆ 1 3 2ik0x0 0 = d k e− a(k)a( k)+e a(k)a†(k) 2k0 − Z ✓ 0 2ik0x0 + e a†(k)a(k)+e a†(k)a†( k) − ◆ 1 3 2ik0x0 = d k e− a(k)a( k)+a(k)a†(k) 2k0 − Z ✓ (15) 2ik0x0 + a†(k)a(k)+e a†(k)a†( k) − ◆ Similarly, using equation 5: 4 1 3 2 3 3 3 0 0 i(k+k0) x d x ⇧ (x)= d x d k d k0 pk k0 e− · a(k)a(k0) −2(2⇡)3 Z i(k kZ) x ZZ i( k+k ) x ✓ e− − 0 · a(k)a†(k0) e− − 0 · a†(k)a(k0) − − i( k k ) x + e− − − 0 · a†(k)a†(k0) ◆ 0 2 (k ) 3 2ik0x0 = d k e− a(k)a( k) a(k)a†(k) − 2k0 − − Z ✓ (16) 2ik0x0 a†(k)a(k)+e a†(k)a†( k) − − ◆ The gradient of φ is found from equation 1: 3 ( ik x) (ik x) φ(x)= iCk d k e − · a(k) e · a†(k) (17) r − − Z ✓ ◆ So, we see that 2 3 3 3 (i) 3 d k d k0 d x φ(x) φ(x)= 3 d x k r ·r 2(2⇡) pk0 p 00 Z Z ZZ k i(k+k ) x i(k k ) x k0 e− 0 · a(k)a(k0) e− − 0 · a(k)a†(k0) · − ✓ i( k+k ) x i( k k ) x e− − 0 · a†(k)a(k0)+e− − − 0 · a†(k)a†(k0) − ◆ 2 k 3 2ik0x0 = d k e− a(k)a( k)+a(k)a†(k) 2k0 − Z ✓ (18) 2ik0x0 + a†(k)a(k)+e a†(k)a†( k) − ◆ Substituting equations 2.2, 2.2, and 2.2 into equation 14, we can derive an equation for the Hamiltonian: 1 3 2 2 0 2 2ik0x0 H = d k (m + k (k ) ) e− a(k)a( k) 4k0 − − Z ✓ 2ik0x0 2 2 0 2 + e a†(k)a†( k) +(m + k +(k ) ) a(k)a†(k)+a†(k)a(k) − ◆ ✓ ◆ 1 3 2ik0x0 = d k 0 e− a(k)a( k) 4k0 ⇥ − Z ✓ 2ik0x0 0 2 + e a†(k)a†( k) +2(k ) a(k)a†(k)+a†(k)a(k) − ◆ ✓ ◆ 5 1 3 0 = d kk a(k)a†(k)+a†(k)a(k) 2 Z ✓ ◆ 1 3 d kE a(k)a†(k)+a†(k)a(k) (19)= 2 k Z ✓ ◆ Recalling the commutation relations from equations 2.1, 12, and 13, the commutation relations of the annihilation and creation operators with the Hamiltonian are easily calculated to be [a(k),H]=Eka(k)(20) a†(k),H = E a†(k)(21) − k So the annihilation and creation⇥ operators⇤ annihilate and create a quantum of energy Ek,respectively.Thisisidenticalinformtotheharmonicoscillator. Equations 20 and 21 therefore naturally lead to the description of the Klein- Gordon field as an infinite set of uncoupled harmonic oscillators, one for each point in space-time x. 2.3 Normal Ordering The problem with the harmonic oscillator description of the Klein-Gordon field is that harmonic oscillators have nonzero ground state energy due to an additive constant.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us