ORTHOGONAL GROUP of CERTAIN INDEFINITE LATTICE Chang Heon Kim* 1. Introduction Given an Even Lattice M in a Real Quadratic Space

ORTHOGONAL GROUP of CERTAIN INDEFINITE LATTICE Chang Heon Kim* 1. Introduction Given an Even Lattice M in a Real Quadratic Space

<p>JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 20, No.&nbsp;1, March 2007 </p><p>Chang Heon Kim* </p><p>Abstract. We compute the special orthogonal group of certain lattice of signature (2 1). </p><p>0</p><p>−</p><p>0<br>0</p><p></p><ul style="display: flex;"><li style="flex:1">×</li><li style="flex:1">\</li></ul><p></p><p>0</p><p>≈<br>×</p><p>Theorem </p><p>integral symmetric matrices, that is, </p><ul style="display: flex;"><li style="flex:1">. Let </li><li style="flex:1">be a 3-dimensional even lattice of all </li></ul><p></p><p>×</p><ul style="display: flex;"><li style="flex:1">|</li><li style="flex:1">∈</li></ul><p></p><p>Received December 30, 2006. 2000 Mathematics Subject Classification:&nbsp;Primary 11F03, 11H56. Key words and phrases:&nbsp;indefinite lattice, orthogonal group. * This work was supported by a Bahrom research grant from Seoul Women’s <br>University (2007). </p><ul style="display: flex;"><li style="flex:1">48 </li><li style="flex:1">Chang Heon Kim </li></ul><p></p><p>with norm special orthogonal group of&nbsp;) is isomorphic to </p><p>−</p><p>for </p><p>∈</p><p></p><ul style="display: flex;"><li style="flex:1">. Then </li><li style="flex:1">(=the </li></ul><p>.</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">Remark </li><li style="flex:1">.</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">−</li></ul><p></p><p>∗</p><p>0<br>0</p><p></p><ul style="display: flex;"><li style="flex:1">∈</li><li style="flex:1">∈</li></ul><p></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li></ul><p>∈<br>∈</p><p>1 0 0 0 <br>0 1 1 0 <br>0 0 0 1 <br>1 0 0 1 </p><p>±</p><p>2</p><p>×</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">∈</li></ul><p>∈</p><p>3<br>100<br>010<br>001<br>2</p><p>−</p><p>3</p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>−<br>−<br>−</p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li><li style="flex:1">−</li><li style="flex:1">−</li><li style="flex:1">−</li></ul><p></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li><li style="flex:1">−</li></ul><p></p><p>22</p><p></p><ul style="display: flex;"><li style="flex:1">−</li><li style="flex:1">−</li><li style="flex:1">−</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Orthogonal group of certain indefinite lattice </li><li style="flex:1">49 </li></ul><p></p><p>2</p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>−<br>×−</p><ul style="display: flex;"><li style="flex:1">×</li><li style="flex:1">−</li><li style="flex:1">−</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>−</p><ul style="display: flex;"><li style="flex:1">×</li><li style="flex:1">×</li></ul><p>−</p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>−</p><p>22<br>22</p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">2</li></ul><p></p><p>[1] </p><p>R. Borcherds, Automorphic forms with singularities on Grassmanians, Invent. </p><p>Math. 132 (1998), 491-562. </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us