Open Problems 1. Does the lower radical construction for `-rings stop at the first infinite ordinal (Theorems 3.2.5 and 3.2.8)? This is the case for rings; see [ADS]. 2. If P is a radical class of `-rings and A is an `-ideal of R, is P(A) an `-ideal of R (Theorem 3.2.16 and Exercises 3.2.24 and 3.2.25)? 3. (Diem [DI]) Is an sp-`-prime `-ring an `-domain (Theorem 3.7.3)? 4. If R is a torsion-free `-prime `-algebra over the totally ordered domain C and p(x) 2C[x]nC with p0(1) > 0 in C and p(a) ¸ 0 for every a 2 R, is R an `-domain (Theorems 3.8.3 and 3.8.4)? 5. Does each f -algebra over a commutative directed po-unital po-ring C whose left and right annihilator ideals vanish have a unique tight C-unital cover (Theorems 3.4.5, 3.4.11, and 3.4.12 and Exercises 3.4.16 and 3.4.18)? 6. Can an f -ring contain a principal `-idempotent `-ideal that is not generated by an upperpotent element (Theorem 3.4.4 and Exercise 3.4.15)? 7. Is each C-unital cover of a C-unitable (totally ordered) f -algebra (totally or- dered) tight (Theorem 3.4.10)? 8. Is an archimedean `-group a nonsingular module over its f -ring of f -endomorphisms (Exercise 4.3.56)? 9. If an archimedean `-group is a finitely generated module over its ring of f -endomorphisms, is it a cyclic module (Exercise 3.6.20)? 10. Is E(F(M)M) ⊆ F(M)D(X) (Exercises 4.3.54 and 4.3.56)? Here, M is an archime- dean `-group, F(M) is its f -ring of f -endomorphisms, X is the Stone space of its Boolean algebra of polars, and E(F(M)M) denotes its injective hull as an F(M)-module. 11. Determine F(M) when M is a free abelian `-group (Theorems 4.5.6 and 4.5.10). 609 610 Open Problems 12. If an f -algebra over C is V-`-unitable for a suitable variety of `-algebras V , must it be a C-unitable f -algebra (Theorem 3.4.2 and remarks after it)? For example, V is the variety of almost f -algebras or the variety of sp-` algebras. 13. Conjecture: A regular sp-`-ring is an f -ring. (True if 1 2 R by Theorem 3.7.3). 14. Is a unital right self-injective f -ring necessarily left self-injective (Theorems 4.3.22 and 4.3.30)? 15. Is the maximal right quotient ring Q of the right nonsingular right f -ring R an `-ring extension of R provided QR is an f -module extension of RR? 16. If an W- f -group G has the property that each of its values is normal in its cover must each of its W-values be normal in its cover (Exercises 2.5.2, 2.5.18, and 2.5.19)? See [D] for descriptions of normal valued `-groups. 17. Develop the theory of f -modules over the f -ring C(X) where X is a topological space and over the f -ring D(X) where X is a Stone space or just an extremally disconnected space. 18. Is a free nonsingular R- f -module `-torsionless for R =C(X) or R = D(X) where X is as in the previous problem (Theorems 4.5.6 and 4.5.10)? 19. Determine the nonsingular ℵa -injective right f -modules over a semiprime right q f -ring (Theorem 4.4.6). 20. Does the category of unital right f -modules over a unital f -ring have nonzero injectives (Theorem 4.4.1)? The answer is no when the ring is an irredundant semiprime right q f -ring. 21. Conjecture: The polynomial ring D[x] over the totally ordered division ring D does not have an sp-lattice order extending that of D in which deg x+ ¸ 3 (Theorem 6.1.19). 22. Identify which fields, necessarily real algebraic extensions of the rationals, are O¤-fields (Theorems 6.2.13 and 6.2.14). 23. Is a free sp-`-algebra or a free f -algebra or a free `-algebra `-semiprime (The- orems 6.3.18 and 6.3.19)? The same question for the free unital `-algebras. 24. Is a totally ordered division ring which satisfies the identity j[[x;y];z]j · x2 ^ y2 ^ z2 a field (Theorem 6.3.9 and 6.3.11)? 25. Can a finite valued `-unital lattice-ordered division ring be embedded in a lattice-ordered division algebra over the reals (Theorem 5.2.42)? 26. Which unital f -rings R have the property that each lattice order of a finite matrix ring over R which extends the lattice order of R is isomorphic to the usual lattice order (Theorems 6.4.1 and 6.4.9)? Open Problems 611 27. If K is a totally ordered division ring can each lattice order of the matrix ring Kn for which K(Kn) and (Kn)K are vector lattices be obtained as in Theorem 6.4.11? References [A1] A. A. Albert, On ordered algebras, Bull. Am. Math. Soc., 46 (1940), 521–522. [A2] A. A. Albert, A property of ordered rings, Proc. Amer. Math. Soc., 8 (1957), 128–129. [AL1] N. L. Alling, A characterization of abelian ha -groups in terms of their natural valuation, Proc. Nat. Acad. Sci., 47 (1961), 711–713. [AL2] N. L. Alling, On the existence of real closed fields that are ha -sets of power ℵa , Trans. Amer. Math. Soc., 103 (1962), 341–352. [AL3] N. L. Alling, On exponentially closed fields, Proc. Amer. Math. Soc., 13 (1962), 706–711. [AM1] S. A. Amitsur, A general theory of radicals, I, Amer. J. Math., 74 (1952), 774–786. [AM2] S. A. Amitsur, A general theory of radicals, II, Amer. J. Math., 76 (1954), 100–125. [AM3] S. A. Amitsur, A general theory of radicals, III, Amer. J. Math., 76 (1954), 126–136. [AM4] S. A. Amitsur, Generalized polynomial identities and pivotal polynomials, Trans. Amer. Math. Soc., 114 (1965), 210–226. [AN1] F. W. Anderson, On f -rings with the ascending chain condition, Proc. Amer. Math. Soc., 13 (1962), 715–721. [AN2] F. W. Anderson, Lattice-ordered rings of quotients, Canad. J. Math., 17 (1965), 434–448. [ACK] M. Anderson, P.F. Conrad, and G. O. Kenny, Splitting properties in archimedean `-groups, J. Austral. Math. Soc., 23 (1977), 247–256. [AF] M. Anderson and T. Feil, Lattice-ordered Groups, D. Reidel, Dordrecht, 1988. [ADS] T. Anderson, N. Divinsky, and A. Sulinski, Hereditary radicals in associative and alterna- tive rings, Canad. J. Math., 17 (1965), 594–603. [AR] V. Andrunakievic and Ju. M. Rjabuhin, Rings without nilpotent elements, and completely simple ideals, Soviet Math. Dokl., 9 (1968), 565–567. [AK] R. F. Arens and I. Kaplansky, Topological Representation of Algebras, Trans. Amer. Math. Soc., 63 (1948), 457–481. [AS] E. P. Armendariz and S. A. Steinberg, Regular self-injective rings with a polynomial identity, Trans. Amer. Math. Soc., 190 (1974), 417–425. [AR1] E. Artin, Uber¨ die Zerlegung definiter Funktionen in Quadrate, Hamb. Abh., 5 (1927), 100– 115. [AR2] E. Artin, Geometric Algebra, Interscience Publishers, New York, 1957. [AS1] E. Artin and O. Schreier, Algebraische Konstruktion reeler Korper,¨ Hamb. Abh., 5 (1926), 85–99. [AS2] E. Artin and O. Schreier, Eine Kennzeichnung der reel abgeschlossenen Korper,¨ Hamb. Abh., 5 (1927), 225–231. [B] K. A. Baker, Free vector lattices, Canad. J. Math., 20 (1968), 58–66. [BA] B. Banaschewski, Totalgeornete Moduln, Arch. Math., 7 (1956), 430–440. [BMM] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, New York, 1996. 613 614 References [BE] H. E. Bell, Duo rings: Some applications to commutativity theorems, Canad. Math. Bull., 2 (1968), 375–380. [BER1] G. M. Bergman, Conjugates and nth roots in Hahn–Laurent group rings, Bull. Malaysian Math. Soc., 1 (1978), 29–41. [BER2] G. M. Bergman, Private communication, 1981. [BER3] G. M. Bergman, Ordering coproducts of groups and semigroups, J. Algebra, 133 (1990), 313–339. [BPL] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Aca- demic Press, New York, 1979. [BERN1] S. J. Bernau, Unique representation of archimedean lattice groups and normal lattice rings, Proc. London Math. Soc., 15 (1965), 599–631. [BERN2] S. J. Bernau, Free abelian lattice groups, Math. Ann., 180 (1969), 48–59. [BERN3] S. J. Bernau, Free non-abelian lattice groups, Math. Ann., 186 (1970), 249–262. [BERN4] S. J. Bernau, Lateral and Dedekind completions of archimedean lattice groups, J. Lon- don Math. Soc., 12 (1976), 320–322. [BH] S. J. Bernau and C. B. Huijsmans, Almost f -algebras and d-algebras, Math. Proc. Cam- bridge Philos. Soc., 107 (1990), 287–308. [BI1] A. Bigard, Contribution a` la theorie´ des groupes reticul´ es´ , Ph.D. Thesis, University of Paris, Paris, 1969. [BI2] A. Bigard, Theories de torsion et f -modules, Seminaire P. Dubreil, Algebre, Exp. No. 5, Secretariat Mathematique, 1973, 1–12. [BI3] A. Bigard, Modules ordonnes´ injectifs, Mathematica, 15 (1973), 15–24. [BI4] A. Bigard, Free lattice-ordered modules, Pacific J. Math., 49 (1973), 1–6. [BK] A. Bigard and K. Keimel, Sur les endomorphismes conservant les polaires d’un groupe reticul´ e´ archimedean,´ Bull. Soc. Math., France, 97 (1970), 81–96. [BKW] A. Bigard, K. Keimel and S. Wolfenstein, Groupes et Anneaux Reticul´ es´ , Lecture Notes in Math. 608, Springer, Berlin, 1977.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages21 Page
-
File Size-